Doc 9906 AN/472 Volume 6

Quality Assurance Manual for Flight Procedure Design

Volume 6 Flight Validation Pilot Training and Evaluation (Development of a Flight Validation Pilot Training Programme)

Approved by the Secretary General and published under his authority

First Edition — 2012

International Civil Aviation Organization

Doc 9906 AN/472 Volume 6

Quality Assurance Manual for Flight Procedure Design

Volume 6 Flight Validation Pilot Training and Evaluation (Development of a Flight Validation Pilot Training Programme)

Approved by the Secretary General and published under his authority

First Edition — 2012

International Civil Aviation Organization

Published in separate English, French, Spanish, Russian, Arabic and Chinese editions by the INTERNATIONAL CIVIL AVIATION ORGANIZATION 999 University Street, Montréal, Quebec, Canada H3C 5H7

For ordering information and for a complete listing of sales agents and booksellers, please go to the ICAO website at <u>www.icao.int</u>

First edition 2012

Doc 9906, Quality Assurance Manual for Flight Procedure Design Volume 6 — Flight Validation Pilot Training and Evaluation (Development of a Flight Validation Pilot Training Programme) Order Number: 9906-6 ISBN 978-92-9249-066-9

© ICAO 2012

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, without prior permission in writing from the International Civil Aviation Organization.

AMENDMENTS

Amendments are announced in the supplements to the *Catalogue of ICAO Publications;* the Catalogue and its supplements are available on the ICAO website at <u>www.icao.int</u>. The space below is provided to keep a record of such amendments.

	AMENDMENTS			CORRIGENDA		
No.	Date	Entered by	No.	Date	Entered by	
			-			
			-			
			-			
			-			
			-			
			-			

RECORD OF AMENDMENTS AND CORRIGENDA

PREFACE

Instrument flight procedures based on conventional ground-based navigation aids have always necessitated a high level of quality control. However, with the implementation of area navigation and associated airborne database navigation systems, even small errors in data could lead to catastrophic results. This significant change in data quality requirements (accuracy, resolution and integrity) has led to the requirement for a systemic quality assurance process (often part of a State Safety Management System (SMS)). The *Procedures for Air Navigation Services — Aircraft Operations* (PANS-OPS, Doc 8168), Volume II, Part 1, Section 2, Chapter 4, Quality Assurance, refers to this manual and requires that the State take measures to "control" the quality of the processes associated with the construction of instrument flight procedures. This manual, which consists of six volumes, aims to provide guidance in attaining these stringent requirements for quality assurance in the procedure design process. All six volumes address crucial areas related to the attainment, maintenance and continual improvement of procedure design quality, as detailed below. Data quality management, procedure designer training and validation of software are all integral elements of a quality assurance system.

Volume 1 — *Flight Procedure Design Quality Assurance System*, provides guidance for quality assurance in the procedure design processes, such as procedure design documentation, verification and validation methods, guidelines about the acquisition/processing of source information/data. It also provides a generic process flow diagram for the design and the implementation of flight procedures.

Volume 2 — *Flight Procedure Designer Training (Development of a Flight Procedure Designer Training Programme),* provides guidance for the establishment of flight procedure designer training. Training is the starting point for any quality assurance programme. This volume also provides guidance for the establishment of a training programme.

Volume 3 — *Flight Procedure Design Software Validation*, provides guidance for the validation (not certification) of procedure design tools, notably with regard to criteria.

Volume 4 — *Flight Procedure Design Construction* (to be developed later).

Volume 5 — *Validation of Instrument Flight Procedures,* provides guidance for conducting the validation process of instrument flight procedures, including safety, flyability and design accuracy.

Volume 6 — *Flight Validation Pilot Training and Evaluation (Development of a Flight Validation Pilot Training Programme),* provides guidance for the establishment of flight procedure validation pilot training. Training is the starting point for any quality assurance system. This volume provides guidance for the establishment of a training and evaluation programme.

Note.— In the independent volumes, when reference is made to the term "manual" in the context of this document, without any further specification, it is presumed to refer to this volume of the Quality Assurance Manual for Flight Procedure Design.

TABLE OF CONTENTS

	Page
ABBREVIATIONS	(<i>ix</i>)
DEFINITIONS	(xi)
FOREWORD	(xiii)
Chapter 1. Introduction	1-1
1.1. General	1-1
1.2 Target audience	1-1
1.3 Goals	1-2
1.4 Structure	1-2
1.5 How to use this manual	1-3
Chapter 2. General provisions for competency-based training and assessment	2-1
2.1 Introduction	2-1
2.2 Competency-based approach to training and assessment	2-1
2.3 The competency framework	2-3
Chapter 3. Flight validation pilot (FVP) requirements and evaluation	3-1
3.1 Prerequisite pilot qualification and experience requirements	3-1
3.2 FVP SKAs	3-1
Chapter 4. Design curriculum	4-1
4.1 Introduction	4-1
4.2 Training phases	4-2
4.3 Process used to derive training objectives from the competency framework	4-2
4.4 Process of sequencing objectives and organizing training modules	4-5
4.5 Developing mastery tests	4-6
4.6 Considerations in designing modules and course materials	4-9
4.7 Example of a flight validation training curriculum	4-11
Chapter 5. Instructor competencies	5-1
5.1 Flight validation instructor competencies	5-1

Pa	ae
1 0	yc.

Chapter 6	6. Validation and post-training evaluation of FVP training	6-1
6.1	Introduction	6-1
6.2	Purpose of evaluation	6-1
6.3	Evaluation approach	6-2
6.4	Level 1: Evaluation of trainee reaction	6-2
6.5	Level 2: Evaluation of trainee mastery learning	6-3
6.6	Level 3: Evaluation of flight validation performance	6-3
6.7	Level 4: Evaluation of result/impact	6-4
6.8	Sample survey of course module opinion	6-6
6.9	Sample survey of course validation	6-7
Appendix	c. Skills, knowledge and attitudes (SKA)	App A-1

ABBREVIATIONS

AIPAeronautical Information PublicationAISAeronautical Information serviceANSPAir navigation service providerAPVApproach procedure with vertical guidanceARINCAeronautical Radio, Inc.ATCAir traffic controlATSAir traffic servicesCPL/IRCommercial pilot licence/instrument ratingCRMCockpit resource managementCRMCollision risk modelDADecision altitudeDMEDistance measuring equipmentDRDead reckoningFPAFlight path angleFPDFlight procedure designFMSFlight validation pilotFVSPFlight validation pilotFVSPFlight validation pilotFVSSGlobal navigation satellite systemGVGround validationIFAIndicated airspeedICAOInternational Civil Aviation OrganizationIFPInstrument flight procedureMDAMinimum descent altitudeMSAMinimum sector altitudeOASObstacle assessment surfaceOJTOn-the-job trainingPANSProcedures for air navigation servicesPBNPerformance-based navigationPFDPlanned flight dataPinsPoint-in-spaceRNAVArea navigationRNP ARRequired navigation performance authorization requiredSARPsStandard and Recommended PracticesSBASSafellite-based navigation systemSIAPStandard instrument depart	AD	Aerodrome
AISAeronautical information serviceANSPAir navigation service providerAPVApproach procedure with vertical guidanceARINCAeronautical Radio, Inc.ATCAir traffic controlATSAir traffic servicesCPL/IRCommercial pilot licence/instrument ratingCRMCockpit resource managementCRMCollision risk modelDADecision altitudeDMEDistance measuring equipmentDRDead reckoningFPAFlight path angleFPDFlight procedure designFMSFlight validation pilotFVPFlight validation service providerGNSSGlobal navigation satellite systemGVGround validationHASHeight above surfaceIASIndicated airspeedICAOInternational Civil Aviation OrganizationIFPInstrument flight procedureMDAMinimum sector altitudeMSAObstacle assessment surfaceOJTOn-the-job trainingPANSProcedures for air navigation servicesPBNPerformance-based navigationFFDPlanned flight dataPinsPoint-in-spaceRNAVArea navigationRNP ARRequired navigation servicesSBASSatellite-based navigation systemSIAPStandard instrument approachSIDStandard instrument approachSIDStandard instrument arrivalTASTrue airspeedTAWSTerrain avoidan		
ANSPAir navigation service providerAPVApproach procedure with vertical guidanceARINCAeronautical Radio, Inc.ATCAir traffic servicesCPL/IRCommercial pilot licence/instrument ratingCRMCockpit resource managementCRMCollision risk modelDADecision altitudeDMEDistance measuring equipmentDRDead reckoningFPAFlight path angleFPDFlight procedure designFMSFlight validation pilotFVPFlight validation service providerGNSSGlobal navigation satellite systemGVGround validationHASHeight above surfaceIASIndicated airspeedICAOInternational Civil Aviation OrganizationIFPInstrument flight procedureMDAMinimum sector altitudeOAAObstacle assessment surfaceOJTOn-the-job trainingPANSProcedures for air navigation servicesPBNPerformance-based navigationPFDPlanned flight dataPinSPoint-in-spaceRNAVArea navigationRIP ARRequired navigation performance authorization requiredSARPsStandard instrument approachSIDStandard instrument approachSIDStandard instrument approachSIDStandard instrument arrivalTARStandard instrument arrivalTASTrue airspeed		
APVApproach procedure with vertical guidanceARINCAeronautical Radio, Inc.ATCAir traffic servicesCPL/IRCommercial pilot licence/instrument ratingCRMCockpit resource managementCRMCollision risk modelDADecision altitudeDMEDistance measuring equipmentDRDead reckoningFPAFlight path angleFPDFlight procedure designFMSFlight procedure designFMSFlight validation pilotFVSPFlight validation service providerGNSSGlobal navigation satellite systemGVGround validationHASHeight above surfaceIASIndicated airspeedICAOInternational Civil Aviation OrganizationIFPInstrument flight procedureMDAMinimum descent altitudeOASObstacle assessment surfaceQJTOn-the-job trainingPANSProcedures for air navigation servicesPBNPerformance-based navigationPFDPlanned flight dataPinSPoint-in-spaceRNAVArea navigationRNP ARRequired navigation performance authorization requiredSARPsStandard instrument approachSIDStandard instrument approachSIDStandard instrument approachSIDStandard instrument approachSIDStandard instrument arrivalTASTrue airspeed	-	
ARINCAeronautical Radio, Inc.ATCAir traffic controlATSAir traffic servicesCPL/IRCommercial pilot licence/instrument ratingCRMCockpit resource managementCRMCollision risk modelDADecision altitudeDMEDistance measuring equipmentDRDead reckoningFPAFlight path angleFPDFlight path angleFVPFlight path angleFVPFlight validation pilotFVSPFlight validation pilotFVSPFlight validation service providerGNSSGlobal navigation satellite systemGVGround validationHASHeight above surfaceIASIndicated airspeedICAOInternational Civil Aviation OrganizationIFPInstrument flight procedureMDAMinimum descent altitudeOASObstacle assessment surfaceOJTOn-the-job trainingPANSProcedures for air navigation servicesPBNPerformance-based navigationPFDPlanned flight dataPinSPoint-in-spaceRNAVArea navigationRNP ARRequired navigation performance authorization requiredSARPsStandard instrument approachSIDStandard instrument approachSIDStandard instrument approachSIDStandard instrument arrivalTASTrue airspeedTAWSTerrain avoidance warning system	-	
ATCAir traffic controlATSAir traffic servicesCPL/IRCommercial pilot licence/instrument ratingCRMCockpit resource managementCRMCollision risk modelDADecision altitudeDMEDistance measuring equipmentDRDead reckoningFPAFlight path angleFPDFlight procedure designFMSFlight path angleFVPFlight validation pilotFVSPFlight validation service providerGNSSGlobal navigation satellite systemGVGround validationHASHeight above surfaceIASIndicated airspeedICAOInternational Civil Aviation OrganizationIFPInstrument flight procedureMDAMinimum descent altitudeMSAObstacle assessment surfaceOJTOn-the-job trainingPANSProcedures for air navigation servicesPBNPerformance-based navigationPFDPlanned flight dataPinSPoint-in-spaceRNAVArea navigationRNP ARRequired navigation performance authorization requiredSARPsStandard and Recommended PracticesSBASSatellite-based navigation systemSIAPStandard instrument approachSIDStandard instrument approachSIDStandard instrument arivalTARStandard instrument arrivalTASTrue airspeed		
ATSAir traffic servicesCPL/IRCommercial pilot licence/instrument ratingCRMCockpit resource managementCRMCollision risk modelDADecision altitudeDMEDistance measuring equipmentDRDead reckoningFPAFlight path angleFPDFlight procedure designFMSFlight validation pilotFVSPFlight validation service providerGNSSGlobal navigation satellite systemGVGround validationHASHeight above surfaceIASIndicated airspeedICAOInternational Civil Aviation OrganizationIFPInstrument flight procedureMDAMinimum descent altitudeMSAObstacle assessment surfaceOJTOn-the-job trainingPANSProcedures for air navigation servicesPBNPerformance-based navigationPFDPlanned flight dataPinSPoint-in-spaceRNAVArea navigationRNPARRequired navigation performance authorization requiredSARPsStandard instrument approachSIDStandard instrument approachSIDStandard instrument approachSIDStandard instrument arrivalTASTrue airspeedTAWSTerrain avoidance warning system	-	
CPL/IRCommercial pilot licence/instrument ratingCRMCockpit resource managementCRMCollision risk modelDADecision altitudeDMEDistance measuring equipmentDRDead reckoningFPAFlight path angleFPDFlight path angleFVPFlight path angleFVPFlight validation pilotFVSPFlight validation service providerGNSSGlobal navigation satellite systemGVGround validationHASHeight above surfaceIASIndicated airspeedICAOInternational Civil Aviation OrganizationIFPInstrument flight procedureMDAMinimum descent altitudeOASObstacle assessment surfaceOJTOn-the-job trainingPANSProcedures for air navigation servicesPBNPerformance-based navigationPFDPlanned flight dataPinSPoint-in-spaceRNAVArea navigationRNP ARRequired navigation performance authorization requiredSARPsStandard instrument approachSIDStandard instrument approachSIDStandard instrument approachSIDStandard instrument arrivalTASTrue airspeedTAWSTerrain avoidance warning system	-	
CRMCockpit resource managementCRMCollision risk modelDADecision altitudeDMEDistance measuring equipmentDRDead reckoningFPAFlight path angleFPDFlight path angleFVPFlight path angleFVPFlight validation pilotFVSPFlight validation service providerGNSSGlobal navigation satellite systemGVGround validationHASHeight above surfaceIASIndicated airspeedICAOInternational Civil Aviation OrganizationIFPInstrument flight procedureMDAMinimum descent altitudeOASObstacle assessment surfaceQJTOn-the-job trainingPANSProcedures for air navigation servicesPBNPerformance-based navigationPFDPlanned flight dataPinSPoint-in-spaceRNAVArea navigationRNP ARRequired navigation performance authorization requiredSARPsStandard instrument approachSIDStandard instrument approachSIDStandard instrument approachSIDStandard instrument arrivalTASTrue airspeedTAWSTerrain avoidance warning system	-	Commercial pilot licence/instrument rating
CRMCollision risk modelDADecision altitudeDMEDistance measuring equipmentDRDead reckoningFPAFlight path angleFPDFlight procedure designFMSFlight procedure designFMSFlight procedure designFVPFlight validation pilotFVSPFlight validation service providerGNSSGlobal navigation satellite systemGVGround validationHASHeight above surfaceIASIndicated airspeedICAOInternational Civil Aviation OrganizationIFPInstrument flight procedureMDAMinimum descent altitudeMSAObstacle assessment surfaceOJTOn-the-job trainingPANSProcedures for air navigation servicesPBNPerformance-based navigationPFDPlanned flight dataPinSPoint-in-spaceRNAVArea navigationRNP ARRequired navigation performance authorization requiredSARPsStandard instrument approachSIDStandard instrument approachSIDStandard instrument approachSIDStandard instrument approachSIARSkills, knowledge and attitudesSMSSafety management systemSTARStandard instrument arrivalTASTrue airspeedTAWSTerrain avoidance warning system	-	
DMEDistance measuring equipmentDRDead reckoningFPAFlight path angleFPDFlight procedure designFMSFlight management systemFVPFlight validation pilotFVSPFlight validation service providerGNSSGlobal navigation satellite systemGVGround validationHASHeight above surfaceIASIndicated airspeedICAOInternational Civil Aviation OrganizationIFPInstrument flight procedureMDAMinimum descent altitudeMSAObstacle assessment surfaceOJTOn-the-job trainingPANSProcedures for air navigation servicesPBNPerformance-based navigationPFDPlanned flight dataPinSPoint-in-spaceRNAVArea navigationRNP ARRequired navigation performance authorization requiredSARPsStandard instrument approachSIAPStandard instrument approachSIAPStandard instrument approachSIAPStandard instrument arrivalTASTrue airspeedTAWSTerrain avoidance warning system	CRM	
DRDead reckoningFPAFlight path angleFPDFlight procedure designFMSFlight procedure designFMSFlight management systemFVPFlight validation pilotFVSPFlight validation service providerGNSSGlobal navigation satellite systemGVGround validationHASHeight above surfaceIASIndicated airspeedICAOInternational Civil Aviation OrganizationIFPInstrument flight procedureMDAMinimum descent altitudeOASObstacle assessment surfaceOJTOn-the-job trainingPANSProcedures for air navigation servicesPBNPerformance-based navigationPFDPlanned flight dataPinSPoint-in-spaceRNAVArea navigationRNP ARRequired navigation performance authorization requiredSARPsStandard and Recommended PracticesSBASSatellite-based navigation systemSIAPStandard instrument approachSIDStandard instrument approachSIDStandard instrument approachSIARSkafety management systemSTARStandard instrument arrivalTASTrue airspeedTAWSTerrain avoidance warning system	DA	Decision altitude
DRDead reckoningFPAFlight path angleFPDFlight procedure designFMSFlight procedure designFMSFlight management systemFVPFlight validation pilotFVSPFlight validation service providerGNSSGlobal navigation satellite systemGVGround validationHASHeight above surfaceIASIndicated airspeedICAOInternational Civil Aviation OrganizationIFPInstrument flight procedureMDAMinimum descent altitudeOASObstacle assessment surfaceOJTOn-the-job trainingPANSProcedures for air navigation servicesPBNPerformance-based navigationPFDPlanned flight dataPinSPoint-in-spaceRNAVArea navigationRNP ARRequired navigation performance authorization requiredSARPsStandard and Recommended PracticesSBASSatellite-based navigation systemSIAPStandard instrument approachSIDStandard instrument approachSIDStandard instrument approachSIARSkafety management systemSTARStandard instrument arrivalTASTrue airspeedTAWSTerrain avoidance warning system	DME	Distance measuring equipment
FPAFlight path angleFPDFlight procedure designFMSFlight management systemFVPFlight validation pilotFVSPFlight validation service providerGNSSGlobal navigation satellite systemGVGround validationHASHeight above surfaceIASIndicated airspeedICAOInternational Civil Aviation OrganizationIFPInstrument flight procedureMDAMinimum descent altitudeMSAMinimum sector altitudeOASObstacle assessment surfaceOJTOn-the-job trainingPANSProcedures for air navigation servicesPBNPerformance-based navigationPFDPlanned flight dataPinSPoint-in-spaceRNAVArea navigationRNP ARRequired navigation systemSIAPStandard instrument approachSIDStandard instrument departureSKASkills, knowledge and attitudesSMSSafety management systemSTARStandard instrument arrivalTASTrue airspeedTAWSTerrain avoidance warning system	DR	
FPDFlight procedure designFMSFlight management systemFVPFlight validation pilotFVSPFlight validation service providerGNSSGlobal navigation satellite systemGVGround validationHASHeight above surfaceIASIndicated airspeedICAOInternational Civil Aviation OrganizationIFPInstrument flight procedureMDAMinimum descent altitudeOASObstacle assessment surfaceOJTOn-the-job trainingPANSProcedures for air navigation servicesPBNPerformance-based navigationPFDPlanned flight dataPinSPoint-in-spaceRNAVArea navigationRNPARRequired navigation performance authorization requiredSARPsStandard instrument approachSIAPStandard instrument approachSIAPStandard instrument approachSIASSafety management systemSTARStandard instrument arrivalTASTrue airspeedTAWSTerrain avoidance warning system	FPA	-
FMSFlight management systemFVPFlight validation pilotFVSPFlight validation service providerGNSSGlobal navigation satellite systemGVGround validationHASHeight above surfaceIASIndicated airspeedICAOInternational Civil Aviation OrganizationIFPInstrument flight procedureMDAMinimum descent altitudeMSAMinimum sector altitudeOASObstacle assessment surfaceOJTOn-the-job trainingPANSProcedures for air navigation servicesPBNPerformance-based navigationPFDPlanned flight dataPinSPoint-in-spaceRNAVArea navigationRNP ARRequired navigation performance authorization requiredSARPsStandards and Recommended PracticesSBASSatellite-based navigation systemSIAPStandard instrument approachSIDStandard instrument approachSIASSafety management systemSTARStandard instrument arrivalTASTrue airspeedTAWSTerrain avoidance warning system	FPD	
FVPFlight validation pilotFVSPFlight validation service providerGNSSGlobal navigation satellite systemGVGround validationHASHeight above surfaceIASIndicated airspeedICAOInternational Civil Aviation OrganizationIFPInstrument flight procedureMDAMinimum descent altitudeMSAMinimum sector altitudeOASObstacle assessment surfaceOJTOn-the-job trainingPANSProcedures for air navigation servicesPBNPerformance-based navigationPFDPlanned flight dataPinSPoint-in-spaceRNAVArea navigationRNP ARRequired navigation performance authorization requiredSARPsStandards and Recommended PracticesSBASSatellite-based navigation systemSIAPStandard instrument approachSIDStandard instrument approachSIDStandard instrument approachSTARStandard instrument arrivalTASTrue airspeedTAWSTerrain avoidance warning system	FMS	
FVSPFlight validation service providerGNSSGlobal navigation satellite systemGVGround validationHASHeight above surfaceIASIndicated airspeedICAOInternational Civil Aviation OrganizationIFPInstrument flight procedureMDAMinimum descent altitudeMSAMinimum sector altitudeOASObstacle assessment surfaceOJTOn-the-job trainingPANSProcedures for air navigation servicesPBNPerformance-based navigationPFDPlanned flight dataPinSPoint-in-spaceRNAVArea navigationRNP ARRequired navigation performance authorization requiredSARPsStandard sand Recommended PracticesSBASSatellite-based navigation systemSIAPStandard instrument approachSIDStandard instrument departureSKASkills, knowledge and attitudesSMSSafety management systemSTARStandard instrument arrivalTASTrue airspeedTAWSTerrain avoidance warning system	FVP	
GNSSGlobal navigation satellite systemGVGround validationHASHeight above surfaceIASIndicated airspeedICAOInternational Civil Aviation OrganizationIFPInstrument flight procedureMDAMinimum descent altitudeMSAMinimum sector altitudeOASObstacle assessment surfaceOJTOn-the-job trainingPANSProcedures for air navigation servicesPBNPerformance-based navigationPFDPlanned flight dataPinSPoint-in-spaceRNAVArea navigationRNP ARRequired navigation performance authorization requiredSARPsStandards and Recommended PracticesSBASSatellite-based navigation systemSIAPStandard instrument approachSIDStandard instrument approachSIDStandard instrument approachSIDStandard instrument approachSTARStandard instrument arrivalTASTrue airspeedTAWSTerrain avoidance warning system	FVSP	-
HASHeight above surfaceIASIndicated airspeedICAOInternational Civil Aviation OrganizationIFPInstrument flight procedureMDAMinimum descent altitudeMSAMinimum sector altitudeOASObstacle assessment surfaceOJTOn-the-job trainingPANSProcedures for air navigation servicesPBNPerformance-based navigationPFDPlanned flight dataPinSPoint-in-spaceRNAVArea navigationRNP ARRequired navigation performance authorization requiredSARPsStandards and Recommended PracticesSBASSatellite-based navigation systemSIDStandard instrument approachSIDStandard instrument approachSIDStandard instrument approachSTARStandard instrument arrivalTASTrue airspeedTAWSTerrain avoidance warning system	GNSS	-
IASIndicated airspeedICAOInternational Civil Aviation OrganizationIFPInstrument flight procedureMDAMinimum descent altitudeMSAMinimum sector altitudeOASObstacle assessment surfaceOJTOn-the-job trainingPANSProcedures for air navigation servicesPBNPerformance-based navigationPFDPlanned flight dataPinSPoint-in-spaceRNAVArea navigation performance authorization requiredSARPsStandards and Recommended PracticesSBASSatellite-based navigation systemSIAPStandard instrument approachSIDStandard instrument departureSKASkills, knowledge and attitudesSMSSafety management systemSTARStandard instrument arrivalTASTrue airspeedTAWSTerrain avoidance warning system	GV	
ICAOInternational Civil Aviation OrganizationIFPInstrument flight procedureMDAMinimum descent altitudeMSAMinimum sector altitudeOASObstacle assessment surfaceOJTOn-the-job trainingPANSProcedures for air navigation servicesPBNPerformance-based navigationPFDPlanned flight dataPinSPoint-in-spaceRNAVArea navigation performance authorization requiredSARPsStandards and Recommended PracticesSBASSatellite-based navigation systemSIAPStandard instrument approachSIDStandard instrument departureSKASkills, knowledge and attitudesSMSSafety management systemSTARTrue airspeedTAWSTerrain avoidance warning system	HAS	Height above surface
IFPInstrument flight procedureMDAMinimum descent altitudeMSAMinimum sector altitudeOASObstacle assessment surfaceOJTOn-the-job trainingPANSProcedures for air navigation servicesPBNPerformance-based navigationPFDPlanned flight dataPinSPoint-in-spaceRNAVArea navigation performance authorization requiredSARPsStandards and Recommended PracticesSBASSatellite-based navigation systemSIAPStandard instrument approachSIDStandard instrument departureSKASkills, knowledge and attitudesSMSSafety management systemSTARTrue airspeedTAWSTerrain avoidance warning system	IAS	Indicated airspeed
MDAMinimum descent altitudeMSAMinimum sector altitudeOASObstacle assessment surfaceOJTOn-the-job trainingPANSProcedures for air navigation servicesPBNPerformance-based navigationPFDPlanned flight dataPinSPoint-in-spaceRNAVArea navigation performance authorization requiredSARPsStandards and Recommended PracticesSBASSatellite-based navigation systemSIAPStandard instrument approachSIDStandard instrument departureSKASkills, knowledge and attitudesSMSSafety management systemSTARStandard instrument arrivalTASTrue airspeedTAWSTerrain avoidance warning system	ICAO	International Civil Aviation Organization
MSAMinimum sector altitudeOASObstacle assessment surfaceOJTOn-the-job trainingPANSProcedures for air navigation servicesPBNPerformance-based navigationPFDPlanned flight dataPinSPoint-in-spaceRNAVArea navigation performance authorization requiredSARPsStandards and Recommended PracticesSBASSatellite-based navigation systemSIAPStandard instrument approachSIDStandard instrument departureSKASkills, knowledge and attitudesSMSSafety management systemSTARStandard instrument arrivalTASTrue airspeedTAWSTerrain avoidance warning system	IFP	Instrument flight procedure
OASObstacle assessment surfaceOJTOn-the-job trainingPANSProcedures for air navigation servicesPBNPerformance-based navigationPFDPlanned flight dataPinSPoint-in-spaceRNAVArea navigation performance authorization requiredSARPsStandards and Recommended PracticesSBASSatellite-based navigation systemSIAPStandard instrument approachSIDStandard instrument departureSKASkills, knowledge and attitudesSMSSafety management systemSTARStandard instrument arrivalTASTrue airspeedTAWSTerrain avoidance warning system	MDA	Minimum descent altitude
OJTOn-the-job trainingPANSProcedures for air navigation servicesPBNPerformance-based navigationPFDPlanned flight dataPinSPoint-in-spaceRNAVArea navigation performance authorization requiredSARPsStandards and Recommended PracticesSBASSatellite-based navigation systemSIAPStandard instrument approachSIDStandard instrument departureSKASkills, knowledge and attitudesSMSSafety management systemSTARStandard instrument arrivalTASTrue airspeedTAWSTerrain avoidance warning system	MSA	Minimum sector altitude
PANSProcedures for air navigation servicesPBNPerformance-based navigationPFDPlanned flight dataPinSPoint-in-spaceRNAVArea navigationRNP ARRequired navigation performance authorization requiredSARPsStandards and Recommended PracticesSBASSatellite-based navigation systemSIAPStandard instrument approachSIDStandard instrument departureSKASkills, knowledge and attitudesSMSSafety management systemSTARStandard instrument arrivalTASTrue airspeedTAWSTerrain avoidance warning system	OAS	Obstacle assessment surface
PBNPerformance-based navigationPFDPlanned flight dataPinSPoint-in-spaceRNAVArea navigationRNP ARRequired navigation performance authorization requiredSARPsStandards and Recommended PracticesSBASSatellite-based navigation systemSIAPStandard instrument approachSIDStandard instrument departureSKASkills, knowledge and attitudesSMSSafety management systemSTARStandard instrument arrivalTASTrue airspeedTAWSTerrain avoidance warning system	OJT	On-the-job training
PFDPlanned flight dataPinSPoint-in-spaceRNAVArea navigationRNP ARRequired navigation performance authorization requiredSARPsStandards and Recommended PracticesSBASSatellite-based navigation systemSIAPStandard instrument approachSIDStandard instrument departureSKASkills, knowledge and attitudesSMSSafety management systemSTARStandard instrument arrivalTASTrue airspeedTAWSTerrain avoidance warning system	PANS	Procedures for air navigation services
PinSPoint-in-spaceRNAVArea navigationRNP ARRequired navigation performance authorization requiredSARPsStandards and Recommended PracticesSBASSatellite-based navigation systemSIAPStandard instrument approachSIDStandard instrument departureSKASkills, knowledge and attitudesSMSSafety management systemSTARStandard instrument arrivalTASTrue airspeedTAWSTerrain avoidance warning system	PBN	Performance-based navigation
RNAVArea navigationRNP ARRequired navigation performance authorization requiredSARPsStandards and Recommended PracticesSBASSatellite-based navigation systemSIAPStandard instrument approachSIDStandard instrument departureSKASkills, knowledge and attitudesSMSSafety management systemSTARStandard instrument arrivalTASTrue airspeedTAWSTerrain avoidance warning system	PFD	Planned flight data
RNP ARRequired navigation performance authorization requiredSARPsStandards and Recommended PracticesSBASSatellite-based navigation systemSIAPStandard instrument approachSIDStandard instrument departureSKASkills, knowledge and attitudesSMSSafety management systemSTARStandard instrument arrivalTASTrue airspeedTAWSTerrain avoidance warning system	PinS	Point-in-space
SARPsStandards and Recommended PracticesSBASSatellite-based navigation systemSIAPStandard instrument approachSIDStandard instrument departureSKASkills, knowledge and attitudesSMSSafety management systemSTARStandard instrument arrivalTASTrue airspeedTAWSTerrain avoidance warning system	RNAV	
SBASSatellite-based navigation systemSIAPStandard instrument approachSIDStandard instrument departureSKASkills, knowledge and attitudesSMSSafety management systemSTARStandard instrument arrivalTASTrue airspeedTAWSTerrain avoidance warning system	RNP AR	
SIAPStandard instrument approachSIDStandard instrument departureSKASkills, knowledge and attitudesSMSSafety management systemSTARStandard instrument arrivalTASTrue airspeedTAWSTerrain avoidance warning system	SARPs	Standards and Recommended Practices
SIDStandard instrument departureSKASkills, knowledge and attitudesSMSSafety management systemSTARStandard instrument arrivalTASTrue airspeedTAWSTerrain avoidance warning system		
SKASkills, knowledge and attitudesSMSSafety management systemSTARStandard instrument arrivalTASTrue airspeedTAWSTerrain avoidance warning system	-	
SMSSafety management systemSTARStandard instrument arrivalTASTrue airspeedTAWSTerrain avoidance warning system		•
STARStandard instrument arrivalTASTrue airspeedTAWSTerrain avoidance warning system		-
TASTrue airspeedTAWSTerrain avoidance warning system		
TAWS Terrain avoidance warning system		
		•
VASIS Visual approach slope indicator system		
	VASIS	visual approach slope indicator system

VNAVVertical navigationVSDGVisual segment design gradeVSSVisual segment surface

DEFINITIONS

Competency. A combination of skills, knowledge and attitudes required to perform a task to the prescribed standard.

- **Competency-based training and assessment.** Training and assessment that are characterized by a performance orientation, emphasis on standards of performance and their measurement and the development of training to the specified performance standards.
- **Competency element.** An action that constitutes a task that has a triggering event and a terminating event that clearly defines its limits, and has an observable outcome.
- **Competency framework.** A competency framework consists of competency units, competency elements, performance criteria, evidence and assessment guide and range of variables. Competency units, competency elements and performance criteria are derived from job and task analyses of procedure designers and describe observable outcomes.
- *Competency unit.* A discrete function consisting of a number of competency elements.
- **Evidence and assessment guide.** A guide that provides detailed information (e.g. tolerances) in the form of evidence that an instructor or an evaluator can use to determine whether a trainee meets the requirements of the competency standard.
- *Flight inspection.* The operation of a suitably equipped aircraft for the purpose of calibrating ground-based NAVAIDS or monitoring/evaluating the performance of the global navigation satellite system (GNSS).
- *Flight procedure designer.* A person responsible for flight procedure design who meets the competency requirements as laid down by the State.
- Flight validation pilot (FVP). A person performing flight validation who meets the competency requirements as laid down by the State.
- Flight validation service provider (FVSP). A body that provides flight validation services.
- Flyability. The ability to keep an aircraft within the predefined tolerances of the designed lateral and vertical flight track.
- *Instrument flight procedure.* A description of a series of predetermined flight manoeuvres by reference to flight instruments, published by electronic and/or printed means.
- *Instrument flight procedure process.* The process in developing an instrument flight procedure from the data origination to the publication.
- *Mastery test.* A test that evaluates a trainee's ability to perform a terminal objective. A mastery test should match as closely as possible the conditions, behaviours and standards of terminal objectives.
- *Material-dependent training.* A well-documented and repeatable training package that has been tested and proven to be effective.

Obstacle. All fixed (whether temporary or permanent) and mobile objects, or parts thereof, that:

- a) are located on an area intended for the surface movement of aircraft; or
- b) extend above a defined surface intended to protect aircraft in flight; or
- c) stand outside those defined surfaces and that have been assessed as being a hazard to air navigation.
- **Performance criteria.** Simple, evaluative statements on the required outcome of the competency element and a description of the criteria used to judge whether the required level of performance has been achieved.

Progress test. A test that measures a trainee's ability to meet key enabling objectives.

Stakeholder. An individual or party with vested interests in an instrument procedure flight validation.

Skills, knowledge, attitudes (SKA). The skills, knowledge and attitudes (SKA) are what an individual requires to perform an enabling objective derived from performance criteria. A skill is the ability to perform an activity that contributes to the effective completion of a task. Knowledge is specific information required for the trainee to develop the skills and attitudes for the effective accomplishment of tasks. Attitude is the mental state of a person that influences behaviour, choices and expressed opinions.

Terminating event. A cue or indicator that a task has been completed.

Training objective. A clear statement that is comprised of three parts, i.e. the desired performance or what the trainee is expected to be able to do at the end of particular stages of training, the performance standard that must be attained to confirm the trainee's level of competence and the conditions under which the trainee will demonstrate competence.

Training provider. In the context of this manual, a body that provides flight validation pilot training.

Triggering event. A cue or indicator that a task should be initiated.

Validation. Activity to confirm that the requirements for a safe and efficient execution of instrument flight procedures have been fulfilled. This activity consists of ground and flight validation.

Verification. The activity whereby the current value of a data element is checked against the value originally supplied.

FOREWORD

Instrument flight procedures (IFPs) are an integral component of the airspace structure. Thousands of aircraft fly instrument departure, arrival or approach procedures to airports around the world. As such, the safety and efficiency of these procedures are important, and their development should be subject to a quality assurance system.

The purpose of validation is to obtain a qualitative assessment of procedure design including obstacle, terrain and navigation data, and provide an assessment of flyability of the procedure so as to ensure a proper standard for all publications.

The terms "flight validation" and "flight inspection" are often misinterpreted as having the same concept. Flight validation and flight inspection are separate activities that, if required, may or may not be undertaken by the same entity.

- a) flight validation is concerned with factors other than the performance of the navigation aid or system that may affect the suitability of the procedure for publication, as detailed in the *Procedures for Air Navigation Services — Aircraft Operations*, (PANS-OPS), Doc 8168, Volume II, Part I, Section 2, Chapter 4, Quality Assurance; and
- b) flight inspection is conducted with the purpose of confirming the ability of the navigation aid(s)/system upon which the procedure is based to support the procedure in accordance with the Standards in Annex 10 Aeronautical Telecommunications and guidance in the Manual on Testing of Radio Navigation Aids (Doc 8071). Personnel performing flight inspection duties should be qualified and certified in accordance with the manual on Testing of Ground-based Radio Navigation Systems (Doc 8071, Volume I).

A procedure design organization may not have the expertise necessary to determine under which conditions flight validation and/or flight inspection may be necessary. For this reason it is recommended that a review by the flight validation and/or flight inspection organizations be included in the State's procedure design process flow. The State is responsible for the overall performance of the procedure, as well as for its quality and suitability for publication.

PANS-OPS, Volume II, Part I, Section 2, Chapter 4, requires the State to have a written policy requiring minimum qualifications and training for flight validation pilots (FVPs), including those flight inspection pilots that perform flight validation of IFPs. This policy also includes standards for the required competency level for FVPs. This manual contains the recommended qualifications and training, as well as guidance concerning the skills, knowledge and attitudes (SKAs) to be addressed in the training and evaluation of FVPs.

The pilot-in-command is responsible for the safe operation of flight in accordance with applicable State regulations; however, due to the nature of flight validation requirements, it is understood that some of the regulations related to altitude and aircraft positioning must be waived by the State in order to properly validate published procedures.

The implementation of procedures is the responsibility of Member States, which implies that the State authorities have the final responsibility for procedures published within their territory. The validation process may be carried out by States themselves or delegated by them to third parties (air traffic services (ATS) providers, private companies, other States, etc.). PANS-OPS requires that States take measures to perform validation of IFPs to ensure the quality and safety of the procedure design for its intended use before publication. In all cases, including when third parties are involved in any step of the validation process, States carry the ultimate responsibility for the procedures published in their national aeronautical information publication (AIP).

This manual has been developed to provide guidance to Member States in developing a competency standard for FVPs to ensure the quality of the flight procedures they publish. It also provides a means, but it is not the only one, for establishing FVP competency and training. Latitude is permitted to satisfy local conditions. The manual may be of interest to any person or organization involved in the flight validation domain.

Chapter 1

INTRODUCTION

1.1 GENERAL

1.1.1 The State is responsible for the safety of all instrument flight procedures (IFPs) in its airspace. Safety is achieved by the application of the criteria in the *Procedures for Air Navigation Services* — *Aircraft Operations* (PANS-OPS, Doc 8168) and associated ICAO provisions. Measures are required to control the quality of the process used to apply the criteria.

1.1.2 PANS-OPS, Volume II, Part I, Section 2, Chapter 4, Quality Assurance, provides procedures with which each State must comply with for quality assurance in flight procedure design. Guidance material for quality assurance supplementing the provisions in PANS-OPS is provided in each volume of this document.

1.1.3 Training is one of the most important elements of quality assurance. Each State should establish standards for the required competency level for flight validation pilot (FVPs). Each State should also ensure that flight validation pilots acquire and maintain this competency level through initial, recurrent/refresher and on-the-job (OJT) training.

1.1.4 This manual is a guideline for States and other stakeholders who are to meet these requirements.

1.2 TARGET AUDIENCE

1.2.1 This volume will be useful to:

- a) State authorities that approve training courses/programmes conducted by flight validation service providers (FVSPs), training providers, etc., where applicable (see Note 1);
- b) FVSPs that validate flight procedures (see Note 2); and
- c) organizations/institutes that provide training courses/programmes for flight validation (training providers).

Note 1.— This statement does not imply that the State authority must approve/certify the training course/ programme.

Note 2.— An FVSP may be a State authority, an air navigation service provider (ANSP) or an independent third party.

1.2.2 Figure 1-1 indicates the relationship between these parties.

Figure 1-1. Relationships between State authority, flight validation service provider (FVSP) and training provider

1.3 GOALS

1.3.1 The primary goal of this manual is to provide guidance to organizations providing FVP training, particularly in developing, implementing and validating training.

1.3.2 The secondary goal is to provide guidance to regulators who certify and/or approve training courses and programmes, as well as to organizations that dispatch trainees to training providers and who have to evaluate training courses and programmes. This manual may also be used as an assessment tool to evaluate the qualifications of candidate FVPs (see 1.5).

1.4 STRUCTURE

The manual consists of six chapters and an appendix as described below:

- a) Chapter 1, Introduction, presents the manual, its target audiences, goals, structure and use;
- b) Chapter 2, General Provisions for Competency-based Training and Assessment, describes general concepts of a competency-based approach including how to conduct a job and task analysis so as to derive a competency framework that is used as a basis to design a curriculum (see Chapter 3). Chapter 2 also includes the competency framework for FVPs;
- c) Chapter 3, Flight Validation Pilot (FVP) Requirements and Evaluation, describes the process concerning validation and post-training evaluations of FVP training;

- d) Chapter 4, Design Curriculum, describes how to derive a curriculum from the competency framework. The method is applicable to all phases of training: initial, OJT and refresher or recurrent training, and includes information on:
 - 1) how to determine prerequisites;
 - 2) how to develop tests applicable to the interim and/or final stage of training;
 - 3) other considerations in designing modules and course materials;
- e) Chapter 5, Instructor Competencies, describes competencies required for instructors of FVP training;
- f) Chapter 6, Validation and Post-Training Evaluation of FVP Training, describes how to implement training and how to evaluate it at the following levels:
 - 1) Level 1: evaluation of trainee reaction;
 - 2) Level 2: evaluation of trainee mastery learning;
 - 3) Level 3: evaluation of flight validation performance;
 - 4) Level 4: evaluation of results/impact on the organization; and
- g) the Appendix contains a sample evidence and assessment guide for one selected competency element.

1.5 HOW TO USE THIS MANUAL

This section outlines how different target audiences can use this manual in line with the primary or secondary goal outlined in 1.3.

1.5.1 Organizations providing FVP training (training providers)

1.5.1.1 Organizations providing FVP training, such as independent training providers and State authorities or flight validation pilot services providers (FVSPs) that provide training for their own validation pilots, can use the manual to:

- complete the job and task analysis with the competency framework as a starting point
- develop training courses/programmes
- evaluate training courses/programmes.

1.5.1.2 Once the job and task analysis is completed, training providers can apply the method described in Chapter 2, General Provisions for Competency-Based Training and Assessment, which may vary from State to State.

- 1.5.1.3 Developing a training course/programme includes several steps such as:
 - determining prerequisites
 - determining training objectives (terminal objectives, enabling objectives, OJT objectives)
 - developing tests
 - organizing modules.

1.5.2 State authorities/regulators

1.5.2.1 Regulators that intend to approve/certify a training course/programme can use this manual as part of their training approval/certification process. For instance, they can establish standards that state that the proposed training should be developed, implemented and evaluated in accordance with a competency-based approach, which is described in 2.2. However, it should be noted that this use is not the primary goal of this manual.

1.5.2.2 Organizations that dispatch FVPs to training providers can evaluate the training courses/programmes by checking whether the training has been developed using the competency-based approach described in 2.2. The curriculum and material of well-developed training courses should adequately cover the competency elements in the FVP competency framework. Again, it should be noted that this use is not the primary goal of this manual.

Note.— This manual can provide useful information for approval/certification/licensing criteria of FVPs, where such systems are implemented. However, ICAO does not have provisions for such systems at present. Therefore, it is beyond the scope of this manual to provide guidance for these systems.

Chapter 2

GENERAL PROVISIONS FOR COMPETENCY-BASED TRAINING AND ASSESSMENT

2.1 INTRODUCTION

This chapter outlines, in general, the principles and procedures to be followed in the design and implementation of a competency-based approach to training and assessment. It lists key features and briefly describes how the competency-based approach is to be used by course developers, instructors and examiners, where applicable. It also provides the requirements that training providers and licensing authorities should comply with in order to implement competency-based training and assessment.

2.2 COMPETENCY-BASED APPROACH TO TRAINING AND ASSESSMENT

2.2.1 The development of competency-based training and assessment should be based on a systematic approach whereby competencies and their standards are defined; training is based on the competencies identified, and assessments are developed to determine whether these competencies have been achieved. Competency-based approaches include, but are not limited to, mastery learning, performance-based training, criterion-referenced training, and instructional systems design. Competency training does not have to be all encompassing; it can be specific to select areas of training.

- 2.2.2 Competency-based approaches to training and assessment should include at least the following features:
 - a) the justification of a training need through a systematic analysis and the identification of indicators for evaluation;
 - b) the use of a job and task analysis to determine performance standards, the conditions under which the job is carried out, the criticality of tasks and the inventory of skills, knowledge and attitudes (SKAs);
 - c) the identification of the characteristics of the trainee population;
 - d) the derivation of training objectives from the task analysis and their formulation in an observable and measurable fashion;
 - e) the development of criterion-referenced, valid, reliable and performance-oriented tests;
 - f) the development of a curriculum based on adult learning principles, with a view to achieving an optimal path to the attainment of competencies;
 - g) the development of material-dependent training; and
 - h) the use of a continuous evaluation process to ensure the effectiveness of training and its relevance to line operations.

Note.— A detailed description of the ICAO course development methodology, a competency-based approach to training and assessment and an example of an ISD methodology can be found in the Procedures for Air Navigation Services — Training (PANS-TRG, Doc 9868), Chapter 2, Attachment.

2.2.2.1 According to PANS-TRG, the course development methodology comprises nine phases, which can be subdivided into three broad categories: analysis, design and production, and evaluation, as shown in Table 2-1.

2.2.2.2 A brief description of the specific outputs of the nine phases is summarized in Table 2-1.

Category	Phases	Outputs
	Phase 1 — Preliminary study	Training proposals, their justification and proposed course of action.
Analysis	Phase 2 – Job analysis	Task description and performance standards.
	Phase 3 – Population analysis	Trainees' characteristics and their existing skills and knowledge.
	Phase 4 – Design of curriculum	Training objectives, mastery tests and sequence of modules.
Design and Production	Phase 5 – Design of modules	Mode of delivery, training techniques and media, draft training material.
	Phase 6 – Production and development testing	Production of all trainee materials.
	Phase 7 – Validation and revision	Try-out of course and revision as required.
Evaluation	Phase 8 – Implementation	Human resources training.
	Phase 9 – Post-training evaluation	Evaluation of training effectiveness; plans for remedial action.

Table 2-1. The nine phases of the course development methodology

2.2.3 Aviation authorities should develop general requirements concerning the management of their examiners and provide guidance on:

- a) the selection of examiners and a description of competency-based assessment training;
- b) the performance criteria to be considered by the examiner when assessing each competency; and
- c) the tolerances applicable to all competency-based tests.

2.3 THE COMPETENCY FRAMEWORK

2.3.1 The competency framework consists of competency units, competency elements, performance criteria, an evidence and assessment guide, and a range of variables. The competency framework for FVPs should be based on the following competency units:

- a) conduct preflight validation;
- b) conduct flight preparation;
- c) conduct simulator evaluation (as required);
- d) conduct flight evaluation (as required); and
- e) conduct post-flight analysis.

2.3.2 Competency units, competency elements and performance criteria are derived from the job and task analysis of FVPs and describe observable outcomes.

Note.— Definitions of competency units, competency elements and performance criteria are provided in the Definitions section.

2.3.3 The competency framework is indicated in Table 2-2. A sample evidence and assessment guide for one competency element is provided in the Appendix, paragraph 4.

2.3.4 The validation process flow chart indicating the work flow in the validation process is provided in Figure 2-1. In general, the steps in the chart correspond to the competency units in the competency framework shown in Table 2-2.

Х.	Com	petency i	unit		
	X.X	Compe	tency ele	ement	
		X.X.X	Perfor	mance criteria	
					Reference (PANS-OPS, Part-Section- Chapter)
1.	Conduct preflight validation				
	1.1	Review	IFP pack	age	
		1.1.1	Ensure	the completeness of package (all forms, files and data included).	Doc 9906, Volume 5 — Validation of Instrument Flight Procedures
		1.1.2		that charts and maps are available in sufficient details to assess IFP the flight validation.	Annex 4 — <i>Aeronautical Charts</i> ; PANS-OPS, Volume II, I-3-5, I-4-9 and III-5-1
		1.1.3	Familia	rize with target population for the procedure.	Doc 9906, Volume 5
		1.1.4	Discus	s the procedure package with the procedure designer, as necessary.	Doc 9906, Volume 5
		1.1.5	Verify t	hat the procedure graphics and data from forms match.	Doc 9906, Volume 5

Table 2-2.	Competency framework for FVPs
------------	-------------------------------

X .	Com	oetency ι	nit	
	X.X	Compet	ency element	
		X.X.X	Performance criteria	
				Reference (PANS-OPS, Part-Section- Chapter)
		1.1.6	Verify the IFP design coding and relevant charting information against the FMS navigation database.	PANS-OPS, Volume II, III-2-5, III-5-2
		1.1.7	Verify that controlling obstacles and obstacles otherwise influencing the design of the procedure are properly identified.	PANS-OPS, Volume II, I-3-5, I-4-9 and III-5-1
		1.1.8	Review the airport infrastructure and special airport regulations.	Annex 14, Volume I and/or II; AIP AD
		1.1.9	Review the navigation infrastructure used by the procedure.	Procedure design report
		1.1.10	Identify items that require flight inspection.	Annex 10; Doc 8071
		1.1.11	Determine the required steps in the flight validation.	Doc 9906, Volume 5
	1.2	Evaluate	data and coding	
		1.2.1	Prepare the loadable data file for the flight management system (FMS).	Doc 9906, Volume 5
		1.2.2	Compare true courses and distances for segments between the data file and procedural data.	Doc 9906, Volume 5
		1.2.3	Compare ARINC 424 coding for legs and path terminators between the data file and procedural data.	ARINC 424; PANS-OPS, Volume II, III-2-5, III-2-5-Appendix
	1.3	Review	pecial operational and training requirements	
		1.3.1	Review deviations from criteria and equivalent level of safety provided by waivers/mitigations.	Procedure design report
		1.3.2	Review the safety case supporting the waiver/mitigation.	Procedure design report
		1.3.3	Assess restricted procedures for special training and equipment requirements.	Doc 9906, Volume 5; Doc 9905
	1.4	Coordina	ite operational issues	
	1	1.4.1	Consider temperature and wind limitations, bank angles, air speeds, climb/descent gradients.	Doc 9906, Volume 5
		1.4.2	Determine the aircraft and equipment needed to complete the flight validation.	Doc 9906, Volume 5
		1.4.3	Determine the airport infrastructure and navaid availability.	Doc 9906, Volume 5
		1.4.4	Determine the weather minima required for the flight validation.	Doc 9906, Volume 5
		1.4.5	Determine whether a night evaluation is required (i.e. new IFR airport).	Doc 9906, Volume 5; Annex 14
		1.4.6	Determine the flight validation coordination required (ATC, airport management).	Doc 9906, Volume 5
	1.5	Docume	nt the results of the preflight validation	
		1.5.1	Assess whether the IFP is ready for further processing in the validation process.	Doc 9906, Volume 5
		1.5.2	Produce a detailed written report of the preflight validation.	Doc 9906, Volume 5

Χ.	Com	petency ι	init	
	X.X	Competency element		
		X.X.X	Performance criteria	
				Reference (PANS-OPS, Part-Section- Chapter)
-	Cond	uct flight	preparation	
	2.1	Conduct	flight preparation for simulator evaluation	
		2.1.1	Ensure that the simulator and aircrew availability are suitable for the flight validation.	Doc 9906, Volume 5
		2.1.2	Ensure the availability of flight validation recorders, as required.	Doc 9906, Volume 5
		2.1.3	Ensure that the electronic data is correctly loaded into the aircraft navigation system.	Doc 9906, Volume 5
		2.1.4	Review the results of the ground validation (GV) so far.	Doc 9906, Volume 5
		2.1.5	Review the required assessments during the simulator evaluation.	Doc 9906, Volume 5, preflight validation report
	2.2	Conduct	flight preparation for flight evaluation	
		2.2.1	Ensure that aircraft and aircrew availability are suitable for the flight validation.	Doc 9906, Volume 5
		2.2.2	Ensure the availability of flight validation recorders, as required.	Doc 9906, Volume 5
		2.2.3	Ensure that weather requirements are met for the flight validation.	Weather briefing; Doc 9906, Volume 5
		2.2.4	Ensure that proper coordination with air traffic control (ATC), airport operator, and/or other stakeholders is effected.	Doc 9906, Volume 5
		2.2.5	Ensure that electronic data is correctly loaded into the aircraft navigation system.	Doc 9906, Volume 5
		2.2.6	Review the results of the GV so far.	Doc 9906, Volume 5; GV report
		2.2.7	Review the results of the simulator evaluation (if performed).	Doc 9906, Volume 5; simulator evaluation report
		2.2.8	Review the required assessments during the flight evaluation.	Doc 9906, Volume 5; Preflight validation report; Simulator evaluation report
•	Cond	uct simu	lator evaluation	
	3.1	Conduct	database verification	
		3.1.1	Ensure that the data from the flight validation database matches that used in the procedure design.	ARINC 424; Doc 9906, Volume 5
		3.1.2	Ensure that the data produces the desired flight track.	ARINC 424; Doc 9906, Volume 5
	3.2	Conduct	flyability and Human Factors assessment	
-		3.2.1	Fly each segment of the IFP on-course and on-path.	Doc 9906, Volume 5
		3.2.2	Validate the intended use of IFP as defined by stakeholders and described in the conceptual design.	Doc 9906, Volume 5
		3.2.3	Evaluate other operational factors, such as charting, required infrastructure, visibility, intended aircraft category.	Doc 9906, Volume 5

٢.	Com	betency u	unit				
X.X		Compet	tency ele	ment			
		X.X.X	Perform	nance criteria			
					Reference (PANS-OPS, Part-Section- Chapter)		
		3.2.4		e the aircraft manoeuvering area for safe operations for each y of aircraft to use the IFP.	Doc 9906, Volume 5		
		3.2.5	Evaluat	e turn anticipation and rate of turns required.	Doc 9906, Volume 5		
		3.2.6	Evaluat requirer	e the IFP complexity, required cockpit workload and any unique nents.	Doc 9906, Volume 5		
		3.2.7	Check t perform	hat waypoint spacing and segment length are suited for aircraft ance.	Doc 9906, Volume 5		
		3.2.8		e the aircraft position at the decision altitude (DA) and/or minimum at altitude (MDA), and the ability to execute a normal landing.	Doc 9906, Volume 5		
		3.2.9	Evaluat	e required climb or descent gradients, if any.	Doc 9906, Volume 5		
		3.2.10	Evaluat interpre	e the proposed charting for correctness and clarity, and for ease of tation.	Doc 9906, Volume 5		
		3.2.11	Evaluat	e TAWS warnings (if applicable).	Doc 9906, Volume 5		
	3.3	Complete associated validation tasks					
		3.3.1	Confirm	waypoint fixes cross-reference to map and navigation positioning.	Doc 9906, Volume 5		
		3.3.2	Indicate	terrain avoidance warning system (TAWS) alerts.	Doc 9906, Volume 5		
		3.3.3		that the final approach segment of the procedure follows the d track and takes the aircraft to the intended point on the ground.	Doc 9906, Volume 5		
		3.3.4	Verify th	nat deviations from design criteria do not compromise safety.	Doc 9906, Volume 5		
	3.4		Verify c	hart depiction and details			
		3.4.1		nat the chart has sufficient detail to safely navigate and identify rable terrain or obstacles.	Annex 4; PANS-OPS, Volume II I-3-5, I-4-9 and III-5-1		
		3.4.2	Verify th interpre	nat the chart accurately portrays the procedure and is easily ted.	Annex 4; PANS-OPS, Volume II, I-3-5, I-4-9 and III-5-1		
		3.4.3	Verify th point.	nat the flight track matches chart and takes aircraft to intended aiming	Doc 9906, Volume 5		
		3.4.4		hat the true and magnetic course to next waypoint indicated on the GNSS/planned flight data (PFD) accurately reflects the procedure	Annex 4; PANS-OPS, Volume II I-3-5, I-4-9 and III-5-1		
		3.4.5		hat the segment distances indicated by the aircraft navigation system ely reflect the procedure design.	Annex 4; PANS-OPS, Volume II I-3-5, I-4-9 and III-5-1		
		3.4.6		nat the flight path angle (FPA) indicated on the FMS or GNSS/PFD ely reflects the procedure design.	Doc 9906, Volume 5		
		3.4.7		nat waypoint spacing and segment length are sufficient to allow the to decelerate or change altitude on each leg without bypassing.	PANS-OPS, Volume II, III-2-1		
	3.5	Record	validation	flight			
		3.5.1	Record	and save electronic flight data.	Doc 9906, Volume 5		

		•		
	X.X	Competency element		
		<i>X.X.X</i>	Performance criteria	Reference (PANS-OPS, Part-Section- Chapter)
•	Cond	luct flight	evaluation	
		4.1.1	Ensure that the data from the flight validation database matches that used in the procedure design.	ARINC 424; PANS-OPS, Volume II, III-2-5 and III-5-2
		4.1.2	Ensure that the data produces the desired flight track.	ARINC 424; PANS-OPS, Volume II, III-2-5 and III-5-2
	4.2	Assess	obstacles and infrastructure	
		4.2.1	Verify the listed controlling obstacle for each segment of the IFP.	Doc 9906, Volume 5
		4.2.2	Conduct obstacle assessment to the lateral limits of each segment.	Doc 9906, Volume 5
		4.2.3	Document any uncharted controlling or significant obstacles with position and elevation.	Doc 9906, Volume 5
		4.2.4	Assess the visual segment surface (VSS).	PANS-OPS, Volume II, I-4-5
	4.3	Conduct	flyability and Human Factors assessment	
		4.3.1	Fly each segment of the IFP on course and on path.	Doc 9906, Volume 5
		4.3.2	Validate the intended use of IFP as defined by stakeholders and described in the conceptual design.	IFP Design Report; Doc 9906, Volume 5
		4.3.3	Evaluate other operational factors, such as charting, required infrastructure, visibility, intended aircraft category.	Doc 9906, Volume 5
		4.3.4	Evaluate the aircraft manoeuvering area for safe operations for each category of aircraft to use the IFP.	Doc 9906, Volume 5
		4.3.5	Evaluate turn anticipation and rate of turns required.	Doc 9906, Volume 5
		4.3.6	Evaluate the IFP complexity, required cockpit workload and any unique requirements.	Doc 9906, Volume 5
		4.3.7	Check that waypoint spacing and segment length are suited for aircraft performance.	PANS-OPS, Volume II, III-2-1
		4.3.8	Evaluate the aircraft position at the DA and/or MDA and the ability to execute a normal landing.	Doc 9906, Volume 5
		4.3.9	Evaluate required climb or descent gradients.	PANS-OPS, Volume II, I-3-2, I-4-3 to 6
		4.3.10	Evaluate the proposed charting for correctness and clarity, and for ease of interpretation.	Doc 9906, Volume 5
		4.3.11	Evaluate TAWS warnings (if applicable).	Doc 9906, Volume 5
	4.4	Complet	e associated validation tasks	
_		4.4.1	Verify all required runway markings, lighting and communications.	Annex 14; Doc 9906, Volume 5
		4.4.2	Verify that the navigation aid/navigation sensor performance supports the procedure design (if applicable).	Doc 9613; Doc 8071

Л .Л	X Competency element			
	X.X.X	Performance criteria		
			Reference (PANS-OPS, Part-Section- Chapter)	
	4.4.3	Confirm that the waypoint fixes cross-reference to map and navigation positioning.	Doc 9906, Volume 5	
	4.4.4	Verify that the runway visual approach slope indicator system (VASIS) is coincident with vertical path angles and document if not.	Doc 9906, Volume 5	
	4.4.5	Verify that ATC communication requirements and navaid reception requirements are met.	Doc 9906, Volume 5	
	4.4.6	Ensure that radar coverage is available for all portions of the procedure where required.	Doc 9906, Volume 5	
	4.4.7	Indicate TAWS alerts.	Doc 9906, Volume 5	
	4.4.8	Confirm that the final approach segment of the procedure follows the intended track and takes the aircraft to the intended point on the ground.	Doc 9906, Volume 5	
	4.4.9	Verify that deviations from design criteria do not compromise safety.	Doc 9906, Volume 5	
	4.4.10	If night evaluation is required, determine the adequacy of airport lighting systems prior to authorizing night minimums.	Doc 9906, Volume 5	
4.5	Verify ch	nart depiction and details		
	4.5.1	Verify that the chart has sufficient detail to safely navigate and identify considerable terrain or obstacles.	Annex 4; PANS-OPS, Volume II I-3-5, I-4-9 and III-5-1	
	4.5.2	Verify that the chart accurately portrays the procedure and is easily interpreted.		
	4.5.3	Verify that the flight track matches the chart and takes aircraft to intended aiming point.	Doc 9906, Volume 5	
	4.5.4	Verify that the true and magnetic course to next waypoint indicated on the FMS or GPS accurately reflects the procedure design.	Annex 4; PANS-OPS, Volume II, I-3-5, I-4-9 and III-5-1	
	4.5.5	Verify that the segment distances indicated by the aircraft navigation system accurately reflect the procedure design.	Annex 4; PANS-OPS, Volume II, I-3-5, I-4-9 and III-5-1	
	4.5.6	Verify that the FPA indicated on the FMS or GNSS/PFD accurately reflects the procedure design.	Doc 9906, Volume 5	
	4.5.7	Verify that the waypoint spacing and segment length are sufficient to allow the aircraft to decelerate or change altitude on each leg without bypassing.	PANS-OPS, Volume II, III-2-	
4.6	Record	validation flight		
	4.6.1	Prepare suitable recording device.	Doc 9906, Volume 5	
	4.6.2	Assure that the required data is recorded.	Doc 9906, Volume 5	
	4.6.3	Record and save electronic flight data.	Doc 9906, Volume 5	
	4.6.4	Produce the appropriate documentation of the recording for inclusion in the IFP package.	Doc 9906, Volume 5	

X.	Com	petency ı	init	
	X.X	Competency element		
		X.X.X	Performance criteria	
				Reference (PANS-OPS, Part-Section- Chapter)
		5.1.1	Review all aspects of the flight validation phase to complete the assessment.	Doc 9906, Volume 5
		5.1.2	Determine whether the assessment has been satisfactory or not.	Doc 9906, Volume 5
	5.2	Complete the IFP processing (in case of satisfactory flight validation)		
		5.2.1	Ensure the completeness and correctness of the IFP package to be forwarded.	Doc 9906, Volume 5
		5.2.2	Confirm that the required flight inspection of navigation aids and/or lighting (if required) has been completed.	Doc 8071; Annex 14
	5.3	Return the IFP to the procedure designer(s) for corrections (in case of unsatisfactory flight validation)		
		5.3.1	Provide detailed feedback to the procedure designer(s) and other stakeholders.	Doc 9906, Volume 5
		5.3.2	Suggest mitigation and/or corrections for unsatisfactory results.	Doc 9906, Volume 5
	5.4	Document the results of the flight validation phase		
		5.4.1	Complete a detailed written report of the flight validation phase.	Doc 9906, Volume 5
		5.4.2	Ensure that any findings and operational mitigations are documented.	Doc 9906, Volume 5
		5.4.3	Forward uncharted controlling obstacle position and elevation data to procedure designer(s) (if any).	Doc 9906, Volume 5
		5.4.4	Ensure recorded data is processed and made available for archiving.	Doc 9906, Volume 5

Chapter 3

FLIGHT VALIDATION PILOT (FVP) REQUIREMENTS AND EVALUATION

3.1 PREREQUISITE PILOT QUALIFICATION AND EXPERIENCE REQUIREMENTS

3.1.1 Due to the impact on safety, States should ensure the highest level of experience and qualification possible when certifying FVPs.

3.1.2 The qualifications for FVPs shall include at least a commercial pilot licence with instrument rating. Alternatively, an equivalent authorization from the State meeting the Annex 1 knowledge and skill requirements for issuing the commercial pilot license and instrument rating is acceptable. The licence held by the FVP should be for the aircraft category (e.g. aeroplane or helicopter) appropriate for the procedure to be validated. In addition, FVPs shall meet all the experience requirements for the airline transport pilot licence in the relevant category of aircraft (e.g. aeroplane or helicopter) as defined in Annex 1. The FVP does not have to be the pilot-in-command of the validation flight nor is he required to have the type rating on the aircraft used for the validation flight. (Refer to the Appendix for general SKAs.)

Note.— The provisions of Annex 1, 2.6.3.1.2 or 2.6.4.1.2, may be applicable with regard to meeting the experience requirements for the airline transport pilot licence.

3.2 FVP SKAs

3.2.1 The following general SKAs are particularly useful for FVPs and are a great aid to those seeking to become an "expert performer":

- a) demonstrate three-dimensional visualization (skill);
- b) multi-tasking (skill);
- c) mathematical understanding (skill/knowledge) (Doc 9906, Volume 2 *Flight Procedure Designer Training (Development of a Flight Procedure Designer Training Programme),* 3.3.2);
- d) demonstrate the ability to work as part of a team (attitude);
- e) cockpit resource management (CRM) (attitude); and
- f) attention to detail (attitude).

3.2.2 The SKAs listed in 3.2.1 are not necessarily a prerequisite to start training as an FVP, nor does the absence of these SKAs make it impossible to perform on the job. It is possible that such SKAs will develop during the process of training or later during job performance.

3.2.3 The activities of FVPs are considered critical to the safety of aviation. The approval of erroneous, incomplete or badly designed flight procedures, inaccurate minima, insufficient obstacle clearance and inadequate infrastructure to support the procedure has direct consequences on the users.

3.2.4 Flight validation pilot training and evaluation are critical elements of quality assurance. Each State should establish standards for the required competency level of FVPs. Each State should ensure that FVPs have acquired and maintain competency levels through formal ground training, supervised on-the-job training (OJT) and recurrent training, and/or can demonstrate performance to an acceptable level. This chapter is a guideline for States and other stakeholders who are to meet these requirements.

3.2.5 In order to adequately validate instrument procedures, FVPs should possess the following basic underpinning knowledge of:

- Standards, procedures and guidance pertinent to aeronautical information services (i.e. Annex 15);
- Standards, procedures and guidance pertinent to flight inspection (i.e. Annex 10, Doc 8071);
- Standards, procedures and guidance pertinent to aerodromes (i.e. Annex 14; the Airport Services Manual (Doc 9137) and the Aerodrome Design Manual (Doc 9157);
- Standards, procedures and guidance pertinent to charting and aviation publications (i.e. Annex 4 and the Aeronautical Chart Manual (Doc 8697)) and;

an understanding of:

- performance-based navigation (PBN) and conventional instrument procedure construction such as standard instrument departures/standard instrument arrivals (SIDs/STARs) and holding/reversal procedures, (i.e. PANS-OPS, Doc 8168);
- the PBN concept (i.e. the Performance-based Navigation (PBN) Manual (Doc 9613));
- the basic concept of and differences between flight validation and flight inspection;
- ARINC 424 coding;
- Human Factors (i.e. the Human Factors Training Manual (Doc 9683));
- different types of aircraft operations (such as air ambulance, arctic flying versus domestic airlines) and aircraft performance (i.e. limitations and equipment);
- obstacle assessment methodology;
- safety assessment process;
- geodesy (i.e. Doc 9906, Volume 2, 3.3.3.8); and
- a comprehensive understanding of Doc 9906, Volume 5.

Chapter 4

DESIGN CURRICULUM

4.1 INTRODUCTION

4.1.1 Paragraphs 4.2.1 to 4.2.4 describe different types of flight validation training. All types are interdependent. Therefore, when planning the most effective and efficient training path, training providers and other stakeholders need to bear in mind the interdependence of these different types of training and that each organization will achieve training effectiveness and efficiency in different ways.

4.1.2 The duration of a course should not be a priority and should be derived from a course plan that is competency-based. It is recognized, however, that the duration impacts cost-effectiveness both for training providers and their clients. As the duration is lengthened, the client organization faces a human resource planning challenge. As it is shortened, the training provider faces a training quality and training effectiveness challenge. For longer training phases (e.g. four weeks or longer), training providers should consider breaking the long period into multiple shorter training periods. Training providers can address these challenges by determining more or less stringent prerequisite SKAs for initial training, which will impact the time required to achieve training objectives, allowing the course duration to be adjusted accordingly.

4.1.3 The final goal of training is to ensure that flight validation is performed to the requirements specified in the competency framework. It will be up to each training provider to establish a balance between the factors described in 4.1.2 while ensuring the quality and effectiveness of training.

4.1.4 Course developers, course instructors and trainees are all stakeholders in the instructional process.

- a) course developers are responsible for the development and production of all course materials. The goal is to produce training packages that can stand alone, that are material-dependent and are performance-oriented;
- b) course instructors are responsible for delivery of all course content and instructional events, as well as for completing all activities involved in the instructional process including guiding and counselling trainees; and
- c) trainees are responsible for actively engaging in training and successfully completing all course module activities and assessment materials.

4.1.5 In order for trainees to achieve full competency on the job, they will undergo a training programme consisting of several phases as described in 4.2. Depending on the trainee's level of skill and knowledge, the trainee may forego some parts in the different phases of training. Each phase will involve a curriculum development process carried out in the following steps:

- a) state the aim of the training;
- b) derive terminal and enabling objectives from the competency framework identified in Chapter 2;
- c) design a competency-based mastery test for each terminal objective;

- d) ensure that all SKAs required for each enabling objective are covered;
- e) sequence terminal and enabling objectives; and
- f) group objectives into modules.

4.2 TRAINING PHASES

4.2.1 Initial training

Initial training is the first phase of training where actual procedure design topics and criteria are covered. The purpose of initial training is to provide basic skills and knowledge to FVP trainees. The curriculum of initial training is derived from the competency framework. The associated duration and mastery test are relevant to the programme.

4.2.2 On-the-job training (OJT)

While OJT cannot be considered a specific training course in the formal sense, it is an essential phase in a training programme. Its purpose is to reinforce formal training and support the achievement of competency standards. Similar to initial training, the OJT curriculum is derived from the competency framework and driven by training objectives. If appropriate, OJT phases can also follow recurrent and refresher training.

4.2.3 Recurrent training

The purpose of recurrent training is to address changes in the available criteria and regulations. It is essential that FVPs update their knowledge and skills in accordance with the latest criteria, technologies and benchmarks from their usual flight validation activity against identified best practices. Regular recurrent training should therefore be planned accordingly. It is recommended that recurrent training be conducted at least once every two years.

4.2.4 Refresher training

The purpose of refresher training is to strengthen skills and knowledge that have weakened through disuse and the passage of time. Given the safety critical nature of the flight validation function, it is strongly recommended that FVSPs identify skills and knowledge that have weakened with time and that refresher training be planned accordingly. The refresher training curriculum should be derived from the competency framework and can be combined with recurrent training.

4.3 PROCESS USED TO DERIVE TRAINING OBJECTIVES FROM THE COMPETENCY FRAMEWORK

Training providers must establish training objectives for all courses offered. Training objectives must be established using the competency framework in Chapter 2. The training provider must define which competency elements must be mastered at the end of course modules and establish training objectives for each module accordingly. It should be noted that training providers can use different courses and different methods to support trainees in achieving similar objectives. Course duration titles and content will vary depending on the training provider. It is emphasized that establishing the training objectives for a course with a given duration will always have an impact on entry requirements (prerequisite SKAs) for the course.

4.3.1 Example for establishing training objectives for FVP training

4.3.1.1 Training objectives contain the three elements: "task (expected behaviour)", "condition" and "standard". There are two types of training objectives — terminal objectives and enabling objectives. A number of enabling objectives can be considered as steps to achieve a terminal objective. Terminal objectives are derived from competency elements, and enabling objectives are derived from performance criteria as shown in Table 2-2.

4.3.1.1.1 An example of establishing a terminal objective is found in Table 2-2, Competency unit 1, "Conduct preflight validation", Competency element 1.1, "Review IFP package". The terminal objective then contains:

Task (expected behaviour):	the FVP reviews the content of the IFP package for completeness and correctness
Condition:	given a proposed IFP
Standard:	in accordance with Doc 9906, Volume 5, and Doc 8168

4.3.1.2 A trainee will then follow a training module at the end of which the trainee will be required to perform the terminal objective as formulated in a mastery test.

4.3.1.3 As described in 4.3.1.1, in order to achieve a terminal objective, there are several enabling objectives that a trainee needs to master. As mentioned, enabling objectives are derived from performance criteria. An example of establishing an enabling objective is found in Table 2-2, Competency unit 1, Competency element 1.2, "Evaluate data and coding", Performance criterion 1.2.3 states, "Compare ARINC 424 coding for legs and path terminators between data file and procedural data". One enabling objective then contains:

Task (expected behaviour):	the FVP can interpret the IFP legs and path terminators and verify that the data set represents the designed procedure
Condition:	given an ARINC 424 data set
Standard:	the correct selection of ARINC 424 path terminators in a given circumstance can be identified with a defined level of confidence and within a reasonable time

4.3.1.4 To be able to achieve this enabling objective, the trainee requires specific SKAs, for example, the trainee is required to:

Skills:	apply methods and knowledge to identify corrupt data	
Knowledge:	identify all sources of necessary data as well as the format in which data is presented	
	understand the importance of entering an accurate and unambiguous translation of the procedure into the database	

Note.— Refer to the Appendix for general information on SKAs.

4.3.2 Establishing OJT objectives

4.3.2.1 Establish OJT training objectives from the competency framework in Chapter 2.

4.3.2.2 The purpose of the OJT phase is to consolidate the skills and knowledge acquired during initial training. Training objectives for OJT phases should be established from the competency framework. The difference between the training objectives and the OJT objectives is the standard, which trainees should achieve to demonstrate that they have

mastered the competency. Often it is not possible to achieve full mastery of a competency through training alone. Experience and practice on the job are required to meet the full performance standard stated in the competency framework. When deriving training objectives, especially for initial training, the course development team should determine the performance standard they expect trainees to achieve. For example, it may not be possible to expect a trainee to perform database verification without errors, and a minimum number of errors are acceptable in the achievement of this objective. Some errors, including during training, are not acceptable because they indicate a lack of SKAs that may impact safety. Other types of errors are less critical and may be acceptable during initial training. The acceptable number and type of errors should be discussed by the course developer, with input from experts in the field. OJT objectives, however, need to be as close or equivalent to the expected job performance; therefore, the standards are more demanding.

4.3.2.3 Example for establishing OJT training objectives

4.3.2.3.1 The terminal objective for the OJT phase following a training course is derived from the competency elements. The following example uses Competency Unit 1, "Conduct preflight validation", Competency element 1.1, "Review IFP package", Competency element 1.2, "Evaluate data and coding", Competency element 1.4, "Coordinate operational issues" and Competency element 1.5, "Document the results of the preflight validation". In order to achieve the OJT terminal objectives, there are several enabling objectives the trainee needs to master. Enabling objectives can be derived from the performance criteria, as explained in 4.3.2.3.2 to 4.3.2.3.5.

4.3.2.3.2 Performance Criteria 1.1.1, "Ensure completeness of package" — students must ensure that all forms, files, and data are included and that the charts and maps are available in sufficient detail to assess IFP during the flight validation. They must be familiar with procedure design constraints, requirements and intended users to determine the acceptability and geographical context to assist in the flight validation process.

4.3.2.3.3 Performance Criteria 1.2.3, "Compare ARINC 424 coding for legs and path terminators between data file and procedural data" — students must be able to verify that the navigation database represents the procedure as documented and charted". They must be familiar with ARINC 424 path terminators and their limitations. Furthermore, they must be aware of limitations of the onboard navigation system with regard to the correct execution of the selected path terminators.

4.3.2.3.4 Performance Criteria 1.4.5, "Determine whether a night evaluation is required (i.e. new IFR airport)" — students must be able to determine whether the procedure requires an evaluation by night and must be aware of any obstacle safeguarding issues, such as penetration of obstacle limitation surfaces according to Annex 14 — *Aerodromes,* and the requirements for lighting.

4.3.2.3.5 Performance Criteria 1.5, "Produce a detailed written report of the preflight validation". The student must demonstrate the ability to prepare a detailed written report of the results of the preflight validation.

4.3.3 SKAs required to achieve the training objective

4.3.3.1 **Example of establishing prerequisite SKAs to achieve the training objectives**

4.3.3.1.1 When a training provider has established the training objectives for a course, it will also be necessary to establish the entry requirements for that course in order to ensure that the objectives can be achieved in the time given. Training objectives, course length and prerequisite SKAs are always directly related. Course content, scope and course length in the following example are not meant to be prescriptive.
Course goal	At the end of this course, the participant will be able to conduct preflight validation in accordance with Doc 9906, Volume 5, and the competency framework specified in Chapter 2.
Target population	Pilots who want to qualify as a FVP according to PANS-OPS, Volume II, Part I, Section 2, Chapter 4.
Course duration	15 days.
Prerequisite SKAs	Commercial pilot licence/instrument rating (CPL/IR) and experience required for an ATPL.

Training providers are invited to state the prerequisites of the respective courses referring to the mastery of competency elements and performance criteria in Chapter 2.

4.4 PROCESS OF SEQUENCING OBJECTIVES AND ORGANIZING TRAINING MODULES

4.4.1 The various training courses can be divided into modules. The flexibility of a modular approach allows training providers to establish the most effective duration for the course, to address individual learning styles and characteristics, and to measure results on job performance. The grouping of the objectives into modules and the sequencing of the modules define the training strategy.

4.4.2 A given module can have several terminal objectives. Each one will have several enabling objectives, which describe the desired performance derived from performance criteria. Finally, OJT objectives describe what the trainee should be able to do after a defined period of practice on the job.

4.4.3 Each module should be designed to ensure that trainees are capable of performing the objectives to the standard required at the end of the module. This will normally require that the module follow the sequence described as:

- a) defining what the trainee will be able to accomplish after learning (the objective);
- b) explaining how the accomplishment will be tested (methodology);
- c) stimulating the recall of prerequisite learning;
- d) presenting the subject-matter content to be learned, piece by piece (based on competency unit, competency element and performance criteria);
- e) providing opportunities for the trainee to practice (laboratory exercises, projects);
- f) reinforcing learning by providing feedback on the trainees' practice (enabling objective test, presentation);
- g) assessing the performance of the trainee (mastery test); and
- h) enhancing retention of what has been learnt so that it can be transferred to other situations (example of strategy, presentation of different projects by other trainees.)

The system should allow for building complexity into training through the creation of additional modules.

4.4.3.1 A variety of instructional techniques can be used to achieve training objectives including lectures, guided group discussions, case studies/projects, laboratory exercises, supervised practices, leaderless groups, field visits, elearning, tutorials, OJT practice, etc. For each training technique there are usually several alternative media for presenting information to the trainees, and these should be selected to suit the training objectives.

4.4.4 An example of an FVP training programme is provided in 4.7.

4.5 DEVELOPING MASTERY TESTS

4.5.1 Purpose of mastery tests

4.5.1.1 A mastery test evaluates a trainee's ability to perform on the job. All trainees must be tested on their level of mastery of terminal objectives identified throughout the course. Training programmes must provide an appropriate level of assessment. As much as possible, mastery tests should match conditions, behaviours and standards of objectives.

4.5.1.2 Whenever possible, the mastery test should require trainees to demonstrate the necessary ability to perform on the actual equipment. Test items should require trainees to demonstrate desired performance based on the objectives being covered. Testing items must match the performance standard and conditions under which trainees are being evaluated as closely as possible.

4.5.1.3 Design of the mastery test should not take place until all terminal objectives have been clearly defined. Mastery tests can then be developed or outlined before putting together the training curriculum. Outlining the mastery test before producing a course structure allows for greater alignment between training and on-the-job performance. It is important to remember that trainees are being tested on their ability to perform specific tasks on-the-job. By designing tests before the curriculum is designed, tests can focus on the "need to know" rather than the "nice to know", thereby ensuring an efficient and effective use of training time.

4.5.2 Validity and reliability

4.5.2.1 The most important requirement of the mastery test is that it must be valid and reliable. A mastery test is considered valid if it measures what it is intended to measure. A valid test must therefore reproduce as faithfully as possible the conditions, behaviour and standards identified by the objectives and cover all the SKAs required to achieve these.

4.5.2.2 A reliable test refers to the capability of yielding the same scores with different people scoring the test. The test should also yield comparatively similar results when administered at different points in time to equally competent trainees. The reliability of a mastery test is dependent on the quality of instructions provided to the trainee. It is important that test instructions always be complete and clear.

4.5.3 Mastery test format

4.5.3.1 Ideally, mastery tests reproduce the conditions of job performance such as in simulations and case scenarios. However, it may not always be possible to design mastery tests in these formats. Alternatively, multiple choice or short written tests can be designed to present a case in which those taking the test demonstrate their ability to perform given terminal objectives.

4.5.3.2 A mastery test should be based on the training objectives covered throughout the course. Developers of the course must describe the context in which observable and measurable outcomes will be identified. For each desired level of mastery, training programmes must structure testing materials on the basis of the competency framework outlined in Chapter 2.

- 4.5.3.3 Mastery tests should be:
 - a) balanced so that the distribution of items reflects the relative importance of the objectives being covered;
 - b) efficient so delivery of the exam is not too long; it should allow for quick but efficient scoring and the processing of results; and
 - c) include a scoring key and a model answer (if appropriate) so that a minimum amount of interpretation is needed when scoring trainees' responses.

4.5.4 Mastery test design

4.5.4.1 For a given terminal objective, trainees will undergo training in a corresponding module or modules. A mastery test will be conducted at the end during which the trainee will be required to perform the terminal objectives as formulated by the training provider. Each objective should be developed in accordance with the competency framework.

4.5.4.2 Depending on each training environment, it is up to the training provider to establish appropriate test items for mastery tests. The following example is provided as an outline of a sample test:

- a) Terminal objective. Given valid sets of electronic IFP/paper documentation and data, ARINC 424 data set, and IFP operational background, the trainee will be able to conduct a preflight validation using the following criteria specified in the competency framework within an acceptable time period identified by the course instructor. All criteria are in accordance with the competency framework as derived in 2.3.
- b) Before writing a test item for this objective, the following questions should be answered:
 - 1) In what context is the terminal objective being carried out?
 - 2) What conditions are being stated for the trainee to complete the objective?
 - 3) What is the expected behaviour for this objective?
 - 4) To what standards should behaviour be carried out?

Conditions: given electronic/paper IFP data, ARINC 424 documentation and data, and an operational scenario.

Behaviour: the student will be able to verify that the IFP package is complete and accurate, compare the ARINC 424 code to the IFP paper product and determine if the preflight validation of the IFP is satisfactory in accordance with Doc 9906, Volume 5.

c) Sample test item based on the above terminal objective. Given a valid set of electronic/paper data and an ARINC 424 data set for an RNAV approach procedure, conduct the preflight validation using the steps outlined in the competency framework of this manual. Figure 4-1 illustrates the mastery test design process.

Figure 4-1. Mastery test design process

4.5.5 Progress test

The purpose of a progress test is to measure a trainee's ability to meet key enabling objectives. It provides immediate feedback to trainees regarding their success or failure. During this part of the module, instructors should consult with trainees on areas of difficulty or where additional clarification is necessary. Through consultation and trainee feedback, instructors can assess the effectiveness of their instruction.

4.5.5.1 It is not feasible or advisable to administer progress tests for every enabling objective. However, this test should be considered for enabling objectives that are difficult or critical to the successful achievement of terminal objectives. The number of progress tests should therefore be based on a criticality analysis of enabling objectives.

4.5.5.2 Progress tests should be designed to address specific SKAs required to support enabling objectives, which can be assessed in the following manner:

- a) skills are best measured when a performance test is utilized (task must be assigned to match the outlined objective);
- b) knowledge may be tested through written or oral tests; and
- c) attitudes are measured through observations of specific performance or questionnaires.

4.5.5.3 Testing can be administered orally, in writing or a combination of both. Each test item, irrespective of the form, should fulfil the following requirements:

- a) test appropriate level of SKAs required by the objective;
- b) not be identical to similar or related questions;
- c) clearly stated;
- d) arranged in an encouraging sequence to motivate trainees; and
- e) arranged by the type of testing item.

4.6 CONSIDERATIONS IN DESIGNING MODULES AND COURSE MATERIALS

The structure of each module must take into consideration the SKAs prerequisites necessary for trainees to reach the optimum level of performance or desired objectives. Course modules and all learning materials should be developed using a systematic step-by-step approach.

4.6.1 Module design

- 4.6.1.1 The following instructional steps should be used throughout the course module for each objective:
 - a) presentation of objective and mastery test;
 - b) indication of the relevance of module content;
 - c) presentation of content;
 - e) clarification of main points;
 - f) provide practice opportunity or reinforcement;
 - g) provide feedback for participants (progress test, etc.); and
 - h) performance of the objective and assessment of achievement.

4.6.1.2 Course objectives and description of the mastery test should be introduced at the beginning of the course module. This allows trainees to know exactly what is expected of them and how they will be evaluated at the end of the course. This will not only reduce their level of anxiety but will also help keep instruction focused on the desired level of performance. At a minimum, the introduction should include:

- a) the presentation of terminal or end-of-module objectives and the mastery test;
- b) intermediate objectives;
- c) activities provided in the module; and
- d) any reference material on the subject matter and intended length of time.

4.6.1.3 During presentation of the module, it may be useful to provide a brief demonstration or sample of the desired performance. This may help motivate participants and provide the relevant context for expected levels of proficiency. The relevant content could be identified in several different ways. One method is to ask participants, "What will happen if this is done?".

4.6.1.4 Presentation of content should be divided into manageable pieces of information and should be sequenced in a logical and interesting manner. The main points of module content should be clarified immediately after they have been presented.

4.6.1.5 Activities and practices should be provided to support the successful achievement of training objectives. Trainees must be provided with several opportunities to review and practise the skills and knowledge being covered before taking a mastery or progress test to help ensure that they have mastered all enabling objectives leading to the desired performance of a terminal objective.

4.6.1.6 Once critical objectives are completed, a progress test may be necessary in some but not all situations. For further details on when to test a trainee's progress, refer to 4.5.1.

4.6.2 Instructional events

4.6.2.1 Instructional events are identified as "any action which moves the trainee towards the accomplishment of any instructional objective". When designing instructional events, course developers should ensure that they address any of the following functions:

- a) gain attention and motivate trainee;
- b) demonstrate what the trainee will be able to accomplish after learning;
- c) demonstrate how accomplishments will be tested;
- d) stimulate the recall of prerequisite learning;
- e) present subject matter content;
- f) provide an opportunity for trainees to make appropriate responses (activities to be performed by the trainee, partial practice, global practice);
- g) reinforce learning by providing feedback (progress test, etc.);
- h) assess performance of trainees (mastery test, progress test, etc.); and
- i) enhance what has been learned and transfer it to other situations (case studies, scenarios, simulations, etc.).

Instructional events may combine two or three of the above functions at a time.

4.6.2.2 Presenting instructional events can vary depending on the content, materials or the trainees themselves. In any case, instructional events should be described and documented. For example, specific instructions should be provided on how instructors summarize discussions, how to organize a role-playing situation, or how to administer a

mastery or progress test. When designing course modules, materials can be instructor-dependent or materialdependent. To help ensure a more consistent delivery of course content, course developers should design content that is material-dependent. Material-dependent courses are courses where the instructor requires minimum interpretation of course content. In this situation, instruction is dictated by the materials, which facilitate the instructor's work. Instructordependent courses are courses where the instructional process is not documented. In this case, an inexperienced or new instructor will need to interpret and adapt the course materials. Material-dependent courses ensure that training is delivered in a consistent and reliable manner.

4.6.3 Production and development of material

4.6.3.1 In order to validate the complete training process, the content of all training materials should be verified by subject matter experts. This helps to ensure that all information presented is not only accurate but also current. This subject matter review provides further assurance that the training materials actually meet the standards of tasks trainees will eventually perform on the job.

4.6.3.2 A sample of individuals from the target population should be trained using a draft version of the instructional materials. The feedback from this validation delivery will be used to address any major flaws in course design and correct materials. All instruction and module terminology should be clearly defined and closely match the learning styles of trainees.

4.7 EXAMPLE OF A FLIGHT VALIDATION TRAINING CURRICULUM

4.7.1 Background

4.7.1.1 General presentation of the training programme

An example of a training curriculum is as follows.

TRAINING PROGRAMME STEPS

Step 0 — PREREQUISITE SCREENING PROGRAMME

- Goal: Review basic knowledge and skills required for entry to the initial training course.
- Means: Identify the level of skill and knowledge of each trainee to ensure trainees meet initial training entry levels.
 - Meet minimum pilot qualification and experience requirements (see PANS-OPS, Volume II, Part I, Section 2, Chapter 4)
 - Knowledge of instrument flight rules
 - Mathematics

Step 1 — INITIAL FLIGHT VALIDATION PILOT TRAINING (GROUND SEGMENT)

- Goal: Acquire necessary knowledge and understanding of the topics described in 3.2.
- Description: A course that provides the training required to qualify as an FVP. The course will provide familiarization with conventional and PBN procedure design criteria, airport safeguarding Standards and Recommended Practices (SARPs), validation requirements, IFP packages as provided by procedure designers, data formats and analysis tools, data collection and documentation, reporting requirements and procedures, regulatory processes, aircraft performance determinations, aircraft avionics requirements, and flight validation guidance and resources available. The course will also provide the basic knowledge and skills to perform all aspects of the validation process including obstacle evaluation and documentation, airport and runway lighting requirements and evaluation methods, flyability and Human Factors assessments, charting considerations and operational factors.

Modules 1–14 are not listed in any particular order but should precede Modules 15–18.

• Modules derived from competency elements

- Module 1: General Introduction to Quality Assurance and Validation of Instrument Flight Procedures
- Module 2: General Criteria for Flight Procedure Design
- Module 3: Conventional Navigation Criteria
- Module 4: Airport Design and Obstacle Limitation
- Module 5: Precision Approach Criteria
- Module 6: PBN Criteria
- Module 7: Approach Procedure with Vertical Guidance (APV) Criteria
- Module 8: Required Navigation Performance Authorization Required (RNP AR) Criteria
- Module 9: Helicopter Point-in-Space (PinS) Criteria
- Module 10: ARINC 424 Database Coding
- Module 11: Geodesy and Earth Modelling
- Module 12: Aeronautical Charting
- Module 13: Safety Assessment Process
- Module 14: Understanding of Different Types of Aircraft Operations and Aircraft Performance
- Module 15: Preflight Validation
- Module 16: Simulator Evaluation
- Module 17: Flight Evaluation
- Module 18: Post-flight Analysis and Documentation
- Teaching points (from the evidence and assessment guide in competency framework)

Module 1: General Introduction to Quality Assurance and Validation of Instrument Flight Procedures

- Overview of the flight procedure design process
- Demonstration of critical points where a quality assurance process is safety critical
- Introduction of online resources and source materials and documents

Module 2: General Criteria for Flight Procedure Design

- Explanation of normal operations versus contingency operations
- Explanation of status of SARPs and PANS (or equivalent) and how deviations from those are handled
- Outline of the procedure design process
- Explanation of the amendment process of reference documentation

Module 3: Conventional Navigation Criteria

- Indicated airspeed (IAS) to true airspeed (TAS)
- Segments on non-precision approach
- Terminal area fixes
- Turn calculations (Newton's law of motion)
- Protection of turns
- Aircraft categories
- Arrival segment
- Initial segment, straight/distance measuring equipment (DME) arc, dead reckoning (DR) track, reversal/racetrack
- Intermediate segment
- Final segment
- Missed approach
- Circling
- Minimum sector altitude (MSA)
- Charting
- Departure procedures
- Holdings

Module 4: Airport Design and Obstacle Limitation

- Demonstration of the obstacle limitation surfaces
- Explain actions to mitigate penetrations

Module 5: Precision Approach Criteria

- General introduction to precision approaches
- Basic instrument landing system (ILS) surfaces
- Obstacle assessment surface (OAS)
- Collision risk model (CRM)
- Missed approach
- Low visibility operations criteria
- Non-standard approach angles

Module 6: PBN Criteria

- Overview of the PBN concept
- Long range and RNAV navigation history
- Function principle of the various navigation methods and sensors (rho/theta, range/range)
- Design criteria and obstacle protection for approach, departure, holding and en route

Module 7: APV Criteria

- APV Baro vertical navigation (VNAV)
- APV satellite-based augmentation system (SBAS)

Module 8: RNP AR Criteria

- Underlying principles
- Design criteria and obstacle assessment
- Examples of published RNP AR procedure

Module 9: Helicopter PinS Criteria

- Introduction to helicopter operations
- PinS approach criteria
- PinS departure criteria
- Publication requirements for PinS

Module 10: ARINC 424 Database Coding

- Database coding history
- The data chain
- ARINC 424 path terminators
- SID coding
- STAR coding
- Approach coding including approach transitions and missed approach
- Coding of conditional requirements (at but not below, at but not before)
- Behaviour of different FMS equipment
- Validation tools

Module 11: Geodesy and Earth Modelling

- Vector geometry
- Spherical trigonometry
- Reference systems
- Map projections
- Datum conversions

Module 12: Aeronautical Charting

- Standards, procedures and guidance pertinent to charting and aviation publications (i.e. Annex 4, Doc 8697)
- Charting guidelines
- Charting workflow
- Charting standards
- Standard instrument approach (SIAP) charts
- Flight charts
- Electronic flight bags

Module 13: Safety Assessment Process

Safety assessment process

Module 14: Understanding Different Types of Aircraft Operations and Performance

- Aircraft operations (such as air ambulance, arctic flying versus domestic airlines)
- Aircraft's performance (i.e. limitations and equipment).

Module 15: Preflight Validation

- Procedure package content
- Procedure package analysis and review
- Resolving procedure design ambiguities and conflicts
- Flight validation requirements of an IFP package, including any special requirements
- Flight inspection and flight validation reports
- Identification of procedure elements that require flight inspection (i.e. new fixes using groundbased navigational aids, VASI commissioning) and the process for requesting required flight inspections
- Operational issues such as temperature and wind limitations, airspeeds, bank angles, climb/ descent gradients, as specified in an IFP package
- IFP design ARINC 424 leg and path terminator coding verification

Module 16: Simulator Evaluation

- Flyability of the IFP and Human Factors impact assessment
- Criteria waivers assessment and equivalent level of safety provided evaluation
- Determination of any special operational and/or training requirements to be added to the IFP

Module 17: Flight Evaluation

- Local operations procedures (i.e. noise abatement procedures and/or non-standard traffic pattern)
- Aircraft and avionics requirements for the flight validation, including aircraft performance (i.e. climb or descent gradients)
- Minimum flight conditions required for the flight validation (i.e. weather, day or night)
- Coordination of flight validation mission with air traffic and/or airport operations, as needed
- SID/STAR/en-route validation
- MVA validation
- Obstacle assessment methodology
- Flyability of the procedure
- Human Factors, cockpit workload
- Waivers/mitigation for deviations from design criteria
- Resolving flight validation ambiguities and conflict

Module 18: Post-flight Analysis and Documentation

- Flight validation recorders or other equipment
- Accurate flight validation reports and records

Step 2 — INITIAL FLIGHT VALIDATION PILOT TRAINING (AEROPLANE/SIMULATOR SEGMENT)

• **Goal:** Acquire the practical skills to perform the flight validation mission using the knowledge and skills gained during Step 1, Ground Segment.

 Description: This course provides a practical component to the flight validation training and allows the knowledge and techniques learned in Step 1, Ground Segment, to be applied in the aeroplane cockpit. Using an aircraft and/or flight simulator, the course includes programming the FMS, database verification, flyability assessments, Human Factors assessments, obstacle evaluation and assessments, airport, runway and communication assessments, and charting evaluation. The course will consider aircraft requirements, aircraft performance, flight planning, safety issues and recordkeeping requirements.

Modules

- Module 1: General Flight Validation Requirements
- Module 2: Flight Planning and Safety
- Module 3: Departure, Arrival and Approach Profiles
- Module 4: Post-Flight Analysis and Documentation

• Teaching points

Module 1: General Flight Validation Requirements

- Review the IFP package for completeness and accuracy
- Accurately determine the flight validation requirements of an IFP package
- Evaluate operational issues such as temperature and wind limitations, airspeeds, bank angles, climb/descent gradients, as specified in an IFP package
- Verify the IFP design ARINC 424 leg and path terminator coding from the IFP package
- Evaluate the aircraft and avionics requirements for the flight validation
- Accurately load, activate and fly the IFP flight plan for validation
- Demonstrate familiarity with any special flight validation recorders or other equipment installed

Module 2: Flight Planning and Safety

- Determine the flight validation requirements of an IFP package, including any special requirements
- Identify procedure elements that require flight inspection (i.e. new fixes using ground-based navigation aids, VASI commissioning)
- Evaluate operational issues such as temperature and wind limitations, airspeeds, bank angles, climb/descent gradients, etc., as specified in the IFP package
- Accurately determine the location and elevation of uncharted or unknown obstacles identified during the flight validation
- Evaluate airspace requirements, airport lighting, airport markings, runway environment, ATC communication requirements and ATC radar requirements
- Determine local operations procedures (i.e. noise abatement procedures and/or non-standard traffic pattern)
- Determine the impact of any deviations from design criteria and accurately evaluate the equivalent level of safety provided
- Evaluate the aircraft and avionics requirements for the flight validation, including aircraft performance (i.e. climb or descent gradients)
- Determine the minimum flight conditions required for the flight validation (i.e. weather, day or night)
- Demonstrate familiarity with aircraft avionics systems to be used for the flight validation
- Determine any special operational and/or training requirements to be added to the IFP
- Effectively coordinate the flight validation with air traffic control and/or airport operators, as needed

Module 3: Departure, Arrival and Approach Profiles

- Demonstrate a departure profile
- Demonstrate an arrival profile
- Demonstrate an approach profile
- Accurately load, activate and fly the IFP flight plan for validation
- Demonstrate familiarity with aircraft avionics systems to be used for the flight validation
- Demonstrate familiarity with any special flight validation recorders or other equipment installed
- Perform accurate obstacle assessments and evaluation of segment controlling obstacles
- Accurately determine the location and elevation of uncharted or unknown obstacles identified during the flight validation
- Accurately assess the flyability of the IFP and Human Factors impact
- Determine any special operational and/or training requirements to be added to the IFP

Module 4: Post-Flight Analysis and Documentation

- Create and process accurate flight validation reports and records

Step 3 — RECURRENT/REFRESHER FLIGHT VALIDATION PILOT TRAINING

- **Goal:** Provide a course of training to update the flight validation crew on all aspects of the validation process.
- Description: The purpose of recurrent training is to address changes in the available criteria and regulations. It is essential that FVPs update their knowledge and skills in accordance with the latest criteria and technologies.
- Module
 - Module 1: Flight Validation Updates (recurrent training)
 - Module 2: Flight Validation Refresher
- Teaching points:

Module 1: Flight Validation Updates

- Review of flight validation requirements
- Review of flight validation process
- Review of flight validation procedural criteria changes
- Review of changes in guidance and procedures

Module 2: Flight Validation Refresher

- Review of key elements in procedure design criteria
- Review of elements proposed/requested by students

Chapter 5

INSTRUCTOR COMPETENCIES

5.1 FLIGHT VALIDATION INSTRUCTOR COMPETENCIES

5.1.1 General

5.1.1.1 In competency-based programmes, instructor competencies are made explicit, and instructors have to demonstrate their instructional skills, knowledge and expertise in the subject matter and training course content.

5.1.1.2 It should be noted that instructors for flight validation training programmes may come from various fields of expertise. They must meet relevant competency standards for the subjects they instruct, as listed in the competency framework developed for FVPs. The instructor must be able to rationalize the criteria provided in ICAO manuals. Furthermore, an appropriate level of practical experience in the subject being taught is required.

5.1.2 Instructional competencies

The instructor must have appropriate competencies of the following fields:

- techniques of applied instruction
- assessment of trainee performance
- the learning process
- elements of effective teaching
- trainee evaluation and testing, training and learning theories
- training programme development
- lesson planning
- classroom instructional techniques
- use of training aids
- analysis and correction of trainee errors.

5.1.3 Maintaining instructional competency standards

It is considered essential that the instructors be given the opportunity to maintain their competency both in the subject being taught and in instructional competency. This should be the responsibility of the training provider.

Chapter 6

VALIDATION AND POST-TRAINING EVALUATION OF FVP TRAINING

6.1 INTRODUCTION

6.1.1 This chapter describes the process concerning validation and post-training evaluations of FVP training which ensures a harmonized level of effective training. Four levels of evaluation have been identified:

- a) evaluation of trainee reaction;
- b) evaluation of trainee mastery learning;
- c) evaluation of flight validation performance; and
- d) evaluation of result/impact.

Each of the four levels will discuss the role and responsibilities of the following organizations:

- a) State authorities that approve training conducted by FVSPs, training providers, etc. (see Note);
- b) FVSPs that conduct ground and flight validation of flight procedures; and
- c) training providers for flight validation.

Note.— This manual does not imply that a State authority must approve and/or certify a training course programme.

6.1.2 Stakeholders in flight validation training should be involved at different levels of the evaluation process as appropriate.

6.2 PURPOSE OF EVALUATION

6.2.1 Each training objective has a meaningful goal or performance output identified in the competency framework. Consequently, evaluations focus on how well training objectives are met and how their achievement will impact job performance.

6.2.2 The principal goal of evaluation is to ensure a level of consistency among all organizations involved in the implementation of FVP training. Figure 6-1 displays the relationships between three key organizations that plan, develop and conduct flight validation training, i.e. the State authority, FVSPs and training providers. It is critical that all organizations validating flight procedures comply with the same competency standards to ensure safety. To properly monitor the effects of training, evaluation must be considered before, during and after training in order to provide organizations with a comprehensive look at the results of the evaluation.

Figure 6-1. Description of the four levels of evaluation

6.3 EVALUATION APPROACH

In order to properly evaluate how FVP training impacts FVSP, State authorities and training providers, a four-level evaluation model (Kirkpatrick's Model of Evaluation) is used in Figure 6-1. This model considers trainee reaction, mastery learning, job performance, and organizational impact. Each level is assessed in sequential order, providing essential feedback on specific aspects linking training and performance outcomes. Level 1 and 2 evaluations provide immediate feedback on the design, development and administration of all courses. Level 3 provides critical feedback to training providers regarding on-the-job performance of trainees who have successfully completed an approved course. Level 4 is the highest level of evaluation; it requires a direct line of communication between all parties involved with FVP training.

6.4 LEVEL 1: EVALUATION OF TRAINEE REACTION

6.4.1 Level 1 identifies the trainee's reactions and opinions to the training course. At this level of the evaluation, training providers are able to obtain feedback on the learning environment. Level 1 surveys are easy and effective tools for assessing how to improve trainee motivation and provide the best possible learning environment. Training providers are responsible for the design and administration of a Level 1 survey, which must be used for all newly designed training courses. Below are some guidelines to consider in developing a Level 1 survey:

- a) identify what information is needed and the goals of the evaluation;
- b) design a form that captures the required information while minimizing the time required to complete and evaluate forms;

- c) encourage written comments or suggestions, which can point to issues that could otherwise be missed;
- d) allow enough time for trainees to respond. Once training is completed, trainees are ready to leave. Therefore, surveying participants at the very end of the session might promote a hurried response;
- e) allow for an anonymous survey or signature option to provide a more reliable data collection;
- f) closely align survey objectives with course objectives; and
- g) use the results of the evaluation to revise course materials as necessary. Establish a clear distribution process for the dissemination of information to anyone who needs it. Ensure that a suitable level of confidentiality is in place for all parties involved with the handling of such documentation.

6.4.2 When the course is delivered for the first time (validation delivery), collect feedback from the trainees after completion of each training module. At the end of the course, obtain overall feedback from them. Level 1 evaluation forms for the collection of the end-of-module and end-of-course information (trainee sample survey) are provided in 6.8 and 6.9.

6.5 LEVEL 2: EVALUATION OF TRAINEE MASTERY LEARNING

Level 2 determines to what extent training has changed attitudes, increased knowledge and improved skills. Training providers use Level 2 evaluations to ensure that trainees have gained the desired skills, knowledge and attitudes to achieve terminal objectives. Level 2 evaluations should be based on mastery test results and should apply the following principles:

- a) measure trainees' performance before and after training. Comparing trainees' pre-course to postcourse knowledge, skill and attitude data helps shape course content and structure. For example, if a significant number of trainees already have the required skills and knowledge prior to the course, training objectives may need to revised;
- b) mastery tests should be criterion-referenced. A criterion-referenced test helps determine whether trainees meet the standard of performance as established by terminal objectives;
- c) ensure that terminal objectives are used to design mastery tests that call trainees to demonstrate successful performance on the job as well as provide valid and reliable measures of performance; and
- ensure statistics are collected on mastery test results for each module of a course. Analysis of these statistics can be used to determine whether course materials should be modified or not.

6.6 LEVEL 3: EVALUATION OF FLIGHT VALIDATION PERFORMANCE

6.6.1 Level 3 evaluation instruments help analyse whether trainees have transferred the SKAs they have acquired through training to actual job performance.

- 6.6.2 A Level 3 evaluation instrument collects data for the following questions:
 - a) Is the task for which training was provided performed on the job?
 - b) How confident are trainees in their ability to perform the task once training has been completed?
 - c) How often do the trainees perform the trained task?
 - d) Will OJT reinforce the needs of the trainee or is formal training required again?
 - e) Additional comments? (these should be open-ended questions)

6.6.3 While a Level 2 evaluation is carried out by training providers, a Level 3 evaluation requires some coordination between training providers and OJT instructors and supervisors. A Level 3 evaluation identifies limitations and barriers to a trainee's performance following the delivery of training. Feedback from a Level 3 evaluation is used to revise training courses and programmes to ensure a better fit between training and job performance.

- a) training providers must:
 - ensure that all newly designed or revised terminal objectives are based on current job performance. Without appropriate alignment of course materials with terminal objectives and competencies, a Level 3 evaluation cannot effectively identify gaps between a trainee's performance on the job and performance required by terminal objectives;
 - 2) complete the appropriate steps to ensure training quality; and
 - 3) review and analyse programme reports and modify training materials accordingly.
- b) FVSPs must:
 - 1) ensure that all newly designed or revised training materials are based on required job performance and safety standards; and
 - review and analyse programme reports and recommend modifications to training programmes as necessary.

6.7 LEVEL 4: EVALUATION OF RESULT/IMPACT

6.7.1 Level 4 seeks to measure how training has benefited the organization affected. Level 4 evaluation is not always applicable because of the organizational differences in States worldwide (the ANSP and the State authority can be the same organization, or the ANSP can be a State-authorized/recognized privatized company, or the FVSP can be a third party). In some cases there is no direct interaction between the flight validation service provider (subcontracted work) and the State authority.

6.7.2 However, when applicable, statistics and reports are summarized to evaluate the overall impact of training on the organization, especially as it relates to safety management. A steering committee including those responsible for safety management should be established to carry out this level of evaluation. Based on performance and safety goals set by the organization, this level of evaluation measures how training supports achievement of these goals. In this context, training is one component of a Safety Management System (SMS) that must be balanced with other organizational components. 6.7.3 Level 4 evaluation identifies the impact of training on an organization's overall performance. Implementation of FVP training should be monitored through result-based evaluations. FVSPs, regulators and training providers should partner in constructing and analyzing Level 4 evaluations. This partnership will help link validation and post-training evaluations of flight validations with organizational goals and business objectives.

- a) State authorities must:
 - 1) ensure that FVSPs utilize a current competency framework that can be reflected in terminal objectives;
 - 2) review data provided by the FVSP;
 - 3) analyse statistical data based on performance goals and eventual outcome;
 - 4) review and establish performance indicators of the flight validation system indicating job performance of flight evaluation pilots; and
 - 5) oversee the flight validation system.

6.8 SAMPLE SURVEY OF COURSE MODULE OPINION

Course instructor: _____ Module title/number: _____

Participant's name (optional): _____

Date: _____

Instructions: Below you will find a series of questions related to the course module you have just participated in. Please take the time to complete each set of questions and answer them as accurately as possible.

Overall view of course: Please mark the response that most closely expresses your opinion.

	Scale: 1 = Strongly disagree 2 = Disagree 3 = Somewhat disagree	4 = Agree	5 = S	trongly a	agree	
		1	2	3	4	5
1.	The instructor for this module was easy to follow.					
2.	Course content met my expectations.					
3.	Materials used were easy to read and understand.					
4.	Pace of the module was appropriate.					
Mas	stery test	1	2	3	4	5
5.	Information on the test was difficult to understand.					
6.	Mastery test did not match terminal objectives.					
7.	Mastery test did not increase my capabilities of performing the job-related task.					
Add	litional comments					
8.	Do you feel anything should be added to make this course more effective? Yes: Please explain.	No:				
9.	Should anything be removed from this module? Yes: No: Please explain.					
10.	- What do you plan to take away from this module? Please explain.					

Additional comments

6.9 SAMPLE SURVEY OF COURSE VALIDATION

Course instructor: _____ Module title/number: _____

Participant's name (optional): _____

Date: _____

Instructions: Below you will find a series of questions related to the training course. Please take your time to complete all sections of the survey.

Overall view of training: Please mark the response that most closely expresses your opinion.

	Scale: 1 = Strongly disagree 2 = Disagree 3 = Somewhat disagree	4 = Agree	5 = S	trongly	agree	
		1	2	3	4	5
1.	The information presented was well organized.					
2.	Training activities were very engaging.					
3.	Information presented was applicable to my performance on the job.					
4.	The objectives for this course were met.					
5.	The instructor for this course was easy to understand.					
Тес	hnical components	1	2	3	4	5
6.	Information for this course was easy to understand.					
7.	Terminology used was comprehensible.					
8.	Visual materials were understandable.					
9.	The practical work and written exercises were appropriate for the course.					
10.	Mastery test reflected content covered throughout the course.					

ctical issues	1	2	3	4	5
During this course I needed help from the instructor.					
I required help from other trainees.					
litional feedback					
Did you find participating in this course difficult? Yes: No: Please explain why.		· · · · · · · · · ·			
Did you enjoy participating in this course? Yes: No: Please explain why or why not.					
	During this course I needed help from the instructor. I required help from other trainees. Iitional feedback Did you find participating in this course difficult? Yes: No: Please explain why. Did you enjoy participating in this course? Yes: No:	During this course I needed help from the instructor. I required help from other trainees. Iitional feedback Did you find participating in this course difficult? Yes: No: Please explain why.	During this course I needed help from the instructor. I required help from other trainees. Iitional feedback Did you find participating in this course difficult? Yes: No: Did you enjoy participating in this course? Yes: No:	During this course I needed help from the instructor. I required help from other trainees. Iitional feedback Did you find participating in this course difficult? Yes: No: Did you enjoy participating in this course? Yes: No:	During this course I needed help from the instructor. I required help from other trainees. Iitional feedback Did you find participating in this course difficult? Yes: No: Please explain why. Did you enjoy participating in this course? Yes: No:

15. Was any part of the course not useful or not valuable? Yes: No: Please explain why or why not.

16. What did you find most valuable in this course?

17. What additional suggestions or comments do you have for improvements?

Appendix

SKILLS, KNOWLEDGE AND ATTITUDES (SKA)

1. GENERAL

1.1 In order to perform tasks, a combination of adequate SKAs is required. A skill is the ability to perform an activity that contributes to the effective completion of a task. Knowledge is specific information required for the trainee to develop the skills and attitudes for the effective accomplishment of tasks. Attitude is the mental state of a person that influences behavior, choices and expressed opinions.

1.2 For example, for the performance criteria 1.1.1, "Ensure completeness of IFP package" shown in Table A-1, there would be a need to have knowledge about what needs to be checked during a flight validation flight. In turn, this knowledge would be required to apply the skill of ensuring all required information is present in the IFP package. The FVP applying this skill would need to be thorough and accurate. This attitude would be reflected throughout the collection and validation process as well as in the outcome of the performance.

1.3 The SKAs necessary to achieve performance criteria and competency elements are inventoried during job and task analysis. During the curriculum design phase, the specific SKAs identified during job and task analysis can be categorized according to the learning associated with them. Different taxonomies can be used to achieve this categorization¹. However, it is beyond the scope of this manual to describe in detail these different taxonomies and their interpretation.

1.4 Gagné, Briggs and Wager's² taxonomy divides intellectual skills into four categories: classifying, rule-using, discriminating and problem-solving. Using this taxonomy, knowledge about flight validation requirements could be categorized as the intellectual skill of classifying. When developing training materials for this skill, course developers would require trainees to define, itemize and rank or catalogue the specific items of a flight validation checklist and use different media to accomplish this.

1.5 For example, a computer programme could be devised where trainees are asked to review the IFP package for completeness and accuracy. The skill of reviewing the IFP package could be categorized as the intellectual skill of rule-using. Course developers could require trainees to check, explain and verify an IFP procedures package. Regarding thoroughness and accuracy (attitudes), course developers would ensure that instructors demonstrate these attitudes and they are elicited from trainees through practical exercises.

¹ Anderson, Lorin W., et al. A Taxonomy for Learning, Teaching, and Assessing: A Revision of Bloom's Taxonomy of Educational Objectives. Addison Wesley, 29 December 2000.

² Gagné, Robert M., Briggs, Leslie J. and Wager, Walter W. *Principles of Instructional Design*. Thomson Learning, February 1988.

Cor	npete	ency unit			
	Con	npetency			
		Perform			
				Evidence and assessment guide	Reference: PANS-OPS: Part- Section-Chapter
1.	Con	nduct pre	flight valid	lation	
	1.1 Review IFP		IFP packag	le	
		1.1.1	Ensure th	ne completeness of the IFP package	
			1.1.1.1	Verify that the procedure report contains an executive summary of the procedure.	Doc 9906, Volumes 1 and 5
			1.1.1.2	Verify that the report clearly identifies the controlling obstacle for each segment.	Doc 9906, Volumes 1 and 5
			1.1.1.3	Verify that the report lists any other obstacle dictating the design of the procedure.	Doc 9906, Volumes 1 and 5
			1.1.1.4	Verify that the MDA/H or DA/H is clearly stated in the report.	Doc 9906, Volumes 1 and 5
			1.1.1.5	Verify that the procedure deviates from design criteria and if so, if a mitigation is provided.	Doc 9906, Volumes 1 and 5
			1.1.1.6	Verify that the report contains proposed ARINC 424 path terminators.	IFP design report
			1.1.1.7	Verify that the procedure identifies and lists every navaid/navigation sensor and fix used in the procedure with its position and identification.	Doc 9906, Volumes 1 and 5
			1.1.1.8	Verify that any special local operations are described and sufficient information is provided thereof.	Doc 9906, Volumes 1 and 5
			1.1.1.9	(Helicopters only) Verify that obstacles penetrating the OCS and OIS are documented.	Doc 9906, Volume 5 PANS-OPS, Volume II, IV-1-1, IV-1-2
		1.1.2		e whether charts and maps are available in sufficient detail to assess IFP e flight validation.	
			1.1.2.1	Verify that all tracks (magnetic and/or true) are provided.	PANS-OPS, Volume II, I-4-9, III-5-1
			1.1.2.2	Verify that all fixes' latitude/longitude and fix formation bearings/distances are provided to the required accuracy.	PANS-OPS, Volume II, I-4-9, III-5-1
			1.1.2.3	Verify that a profile view is provided and contains the required information.	PANS-OPS, Volume II, I-4-9, III-5-1
			1.1.2.4	Verify that descent angle/gradients are provided with the required accuracy.	PANS-OPS, Volume II, I-4-9, III-5-1
			1.1.2.5	Verify that missed approach climb gradients and departure procedure design gradients are clearly shown.	PANS-OPS, Volume II, I-4-9, I-3-3, I-4-6, III-5-1
			1.1.2.6	Verify that any other important information such as "timing to define the MAPt not authorized" or "no turns before the DER/MAPt" are clearly stated.	PANS-OPS, Volume II, I-4-9, I-3-3, I-4-6, III-5-1
			1.1.2.7	Verify that any other obstacle dictating the design of the procedure is charted.	PANS-OPS, Volume II, I-4-9

Table A-1. Sample evidence and assessment guide

Image: state Image: state<
interview interview IV-1.1, IV-1.2 1.1.2.10 (Helicopters only). Verify that initial/intermediate and final/missed approach speeds are clearly stated on the chart. PANS-OPS, Volume II, IV-1.1, IV-1.2 1.1.2.11 (Helicopters only). Verify that a height above surface (HAS) diagram is provided for "proceed VFR" procedures. PANS-OPS, Volume II, IV-1.1, IV-1.2 1.1.2.12 (Helicopters only). Verify that the visual segment descent angle (VSDA) for provided for "proceed visually" procedures is clearly stated on the chart. PANS-OPS, Volume II, IV-1.1, IV-1.2 1.1.2.12 (Helicopters only). Verify if the VSDG (visual segment descent angle (VSDA) for PINS-OPS, Volume II, IV-1.1, IV-1.2 PANS-OPS, Volume II, IV-1.1, IV-1.2 1.1.2.13 (Helicopters only). Verify that obstacles penetrating the OCS and OIS are plantered. PANS-OPS, Volume II, IV-1.1, IV-1.2 1.1.3 Familiarize with target population for the procedure Doc 9906, Volume 5 1.1.3.1 Verify the categories of aircraft the procedure is designed for. Doc 9906, Volume 5 1.1.3.2 Verify bank angle requirements/limitations and their acceptability for the aircraft Doc 9906, Volume 5 1.1.3.3 Verify climb gradient requirements and their acceptability for the aircraft Doc 9906, Volume 5 1.1.3.4 Verify descent gradient requirements and their acceptability for the air
Image: speeds are clearly stated on the chart. IV-1-1, IV-1-2 1.1.2.11 (Helicopters only) Verify that a height above surface (HAS) diagram is pANS-OPS, Volume II, provided for "proceed VFR" procedures. PANS-OPS, Volume II, IV-1-1, IV-1-2 1.1.2.12 (Helicopters only). Verify that the visual segment descent angle (VSDA) for PANS-OPS, Volume II, PinS "proceed visually" procedures is clearly stated on the chart. PANS-OPS, Volume II, IV-1-1, IV-1-2 1.1.2.13 (Helicopters only). Verify if the VSDG (visual segment design gradient) for PANS-OPS, Volume II, PinS departures is clearly stated on the chart. PANS-OPS, Volume II, IV-1-1, IV-1-2 1.1.2.13 (Helicopters only). Verify that obstacles penetrating the OCS and OIS are charted. PANS-OPS, Volume II, IV-1-1, IV-1-2 1.1.2.14 (Helicopters only). Verify that obstacles penetrating the OCS and OIS are charted. PANS-OPS, Volume II, IV-1-1, IV-1-2 1.1.3 Familiarize with target population for the procedure Doc 9906, Volume 5 1.1.3.1 Verify the categories of aircraft the procedure is designed for. Doc 9906, Volume 5 1.1.3.2 Verify bank angle requirements/limitations and their acceptability for the aircraft Doc 9906, Volume 5 1.1.3.3 Verify climb gradient requirements and their acceptability for the aircraft Doc 9906, Volume 5 1.1.3.4 Verify descent gradients/angles and th
Image: second
PinS "proceed visually" procedures is clearly stated on the chart. IV-1-1, IV-1-2 1.1.2.13 (Helicopters only). Verify if the VSDG (visual segment design gradient) for PinS departures is clearly stated on the chart. PANS-OPS, Volume II, IV-1-1, IV-1-2 1.1.2.14 (Helicopters only). Verify that obstacles penetrating the OCS and OIS are charted. PANS-OPS, Volume II, IV-1-1, IV-1-2 1.1.3 Familiarize with target population for the procedure Doc 9906, Volume 5 1.1.3.1 Verify the categories of aircraft the procedure is designed for. Doc 9906, Volume 5 1.1.3.2 Verify any applicable speed limits and their acceptability for the aircraft categories using the procedure. Doc 9906, Volume 5 1.1.3.3 Verify bank angle requirements/limitations and their acceptability for the aircraft categories using the procedure. Doc 9906, Volume 5 1.1.3.4 Verify descent gradients/angles and their acceptability for the aircraft categories using the procedure. Doc 9906, Volume 5 1.1.3.4 Verify descent gradients/angles and their acceptability for the aircraft Doc 9906, Volume 5 1.1.3.5 Verify descent gradients/angles and their acceptability for the aircraft Doc 9906, Volume 5 1.1.4 Discuss the procedure with the procedure designer as necessary Doc 9906, Volume 5
PinS departures is clearly stated on the chart. IV-1-1, IV-1-2 1.1.2.14 (Helicopters only). Verify that obstacles penetrating the OCS and OIS are charted. PANS-OPS, Volume II, IV-1-1, IV-1-2 1.1.3 Familiarize with target population for the procedure Doc 9906, Volume 5 1.1.3.1 Verify the categories of aircraft the procedure is designed for. Doc 9906, Volume 5 1.1.3.2 Verify any applicable speed limits and their acceptability for the aircraft Doc 9906, Volume 5 Doc 9906, Volume 5 1.1.3.3 Verify bank angle requirements/limitations and their acceptability for the aircraft Doc 9906, Volume 5 Doc 9906, Volume 5 1.1.3.4 Verify climb gradient requirements and their acceptability for the aircraft Doc 9906, Volume 5 Doc 9906, Volume 5 1.1.3.5 Verify descent gradients/angles and their acceptability for the aircraft Doc 9906, Volume 5 Doc 9906, Volume 5 1.1.3.5 Verify descent gradients/angles and their acceptability for the aircraft Doc 9906, Volume 5 Doc 9906, Volume 5 1.1.4 Discuss the procedure with the procedure designer as necessary Doc 9906, Volume 5
integration
1.1.3.1 Verify the categories of aircraft the procedure is designed for. Doc 9906, Volume 5 1.1.3.2 Verify any applicable speed limits and their acceptability for the aircraft categories using the procedure. Doc 9906, Volume 5 1.1.3.3 Verify bank angle requirements/limitations and their acceptability for the aircraft categories using the procedure. Doc 9906, Volume 5 1.1.3.4 Verify climb gradient requirements and their acceptability for the aircraft categories using the procedure. Doc 9906, Volume 5 1.1.3.4 Verify climb gradient requirements and their acceptability for the aircraft categories using the procedure. Doc 9906, Volume 5 1.1.3.5 Verify descent gradients/angles and their acceptability for the aircraft categories using the procedure. Doc 9906, Volume 5 1.1.4 Discuss the procedure with the procedure designer as necessary Doc 9906, Volume 5
1.1.3.2 Verify any applicable speed limits and their acceptability for the aircraft categories using the procedure. Doc 9906, Volume 5 1.1.3.3 Verify bank angle requirements/limitations and their acceptability for the aircraft categories using the procedure. Doc 9906, Volume 5 1.1.3.4 Verify climb gradient requirements and their acceptability for the aircraft categories using the procedure. Doc 9906, Volume 5 1.1.3.4 Verify climb gradient requirements and their acceptability for the aircraft categories using the procedure. Doc 9906, Volume 5 1.1.3.5 Verify descent gradients/angles and their acceptability for the aircraft categories using the procedure. Doc 9906, Volume 5 1.1.4 Discuss the procedure with the procedure designer as necessary I.1.4.1 1.1.4.1 Verify with the procedure designer whether your interpretation of the Doc 9906, Volume 5
Image: categories using the procedure. 1.1.3.3 Verify bank angle requirements/limitations and their acceptability for the aircraft categories using the procedure. Doc 9906, Volume 5 Image: 1.1.3.4 Verify climb gradient requirements and their acceptability for the aircraft categories using the procedure. Doc 9906, Volume 5 Image: 1.1.3.5 Verify climb gradient requirements and their acceptability for the aircraft categories using the procedure. Doc 9906, Volume 5 Image: 1.1.3.5 Verify descent gradients/angles and their acceptability for the aircraft categories using the procedure. Doc 9906, Volume 5 Image: 1.1.4 Discuss the procedure with the procedure designer as necessary Image: 1.1.4.1 Verify with the procedure designer whether your interpretation of the Doc 9906, Volume 5 Doc 9906, Volume 5
Image: state of the second state of
categories using the procedure. 1.1.3.5 Verify descent gradients/angles and their acceptability for the aircraft categories using the procedure. Doc 9906, Volume 5 1.1.4 Discuss the procedure with the procedure designer as necessary 1.1.4.1 Verify with the procedure designer whether your interpretation of the Doc 9906, Volume 5
categories using the procedure. 1.1.4 Discuss the procedure with the procedure designer as necessary 1.1.4.1 Verify with the procedure designer whether your interpretation of the Doc 9906, Volume 5
1.1.4.1 Verify with the procedure designer whether your interpretation of the Doc 9906, Volume 5
procedure matches his intention.
1.1.4.2Verify whether the procedure designer requires any specific parameter in the procedure to be validated.Doc 9906, Volume 5
1.1.4.3 Verify whether you have identified all deviations from criteria (if any) and if any action is required in the flight validation to assure the acceptability of the mitigation.
1.1.4.4Verify whether you have identified all special local operations such as noise abatement procedures, etc., if any.Doc 9906, Volume 5
1.1.5 Verify procedure graphics and data from forms match
1.1.5.1 Verify that the fix positions' latitude/longitude is consistent throughout the IFP package. Doc 9906, Volume 5
1.1.5.2 Verify that fix formation bearings/distances are consistent throughout the Doc 9906, Volume 5 IFP package.
1.1.5.3 Verify that tracks (magnetic and/or true) are consistent throughout the Doc 9906, Volume 5 package.
1.1.5.4Verify that segment lengths of each segment are consistent throughout the IFP package.Doc 9906, Volume 5
1.1.5.5 Verify that descent gradients/angles are consistent throughout the IFP Doc 9906, Volume 5 package.

1.1.6	-	e IFP design, coding and relevant charting information against the FMS on Database	
	1.1.6.1	Verify that proposed/intended ARINC 424 path terminators are used in the database.	ARINC 424; PANS-OPS, Volume II, III-2-5, III-5-2; IFP design report
	1.1.6.2	Verify that coded latitude/longitude positions match the designed procedure.	PANS-OPS, Volume II, III-2-5, III-5-2; IFP design report
	1.1.6.2	Verify that coded tracks match the designed procedure.	PANS-OPS, Volume II, III- 2-5, III-5-2 IFP design report
	1.1.6.3	Verify that coded altitudes match the designed procedure.	PANS-OPS, Volume II, III-2-5, III-5-2;IFP design report
	1.1.6.4	Verify that coded speed restrictions match the procedure.	PANS-OPS, Volume II, III-2-5, III-5-2; IFP design report
	1.1.6.5	Verify that coded descent angles/gradients match the designed procedure.	PANS-OPS, Volume II, III-2-5, III-5-2; IFP design report
	1.1.6.6	Verify that coded climb gradients match the procedure.	PANS-OPS, Volume II, III-2-5, III-5-2; IFP design report.
	1.1.6.7	Verify that eventually coded conditional terminators (at xxxxx but not below yyyyft, at xxxxft but not before yyyyy) will produce what the designed procedure reflects.	ARINC 424; IFP design report
1.1.7	-	at controlling obstacles and obstacles otherwise influencing the design of the re are properly identified	
	1.1.7.1	Verify that the controlling obstacle for each segment is appropriately identified with location, description and height/elevation.	PANS-OPS, Volume II, I-4-9
	1.1.7.2	Verify that an appropriate vegetation tolerance was applied to the controlling obstacle and other obstacles (if applicable).	Doc 9368
	1.1.7.3	Verify that any obstacle influencing the design of the procedure is appropriately identified with location, description and height/elevation (e.g. an obstacle avoided with a turn, an obstacle causing an offset track on approach or departure).	PANS-OPS, Volume II, I-4-9
1.1.8	Review a	airport infrastructure and special airport regulations	
 	1.1.8.1	Verify runway reference code number.	Annex 14; Doc 9157
	1.1.8.2	Verify runway reference code letter.	Annex 14; Doc 9157
	1.1.8.3	Verify the applicable obstacle limitation Standards and Recommended Practices (SARPs) and the enforcement thereof.	Annex 14; Doc 9157
	1.1.8.4	Verify provided mitigation for eventual obstacle limitation infringements.	Annex 14; Doc 9157
	1.1.8.5	Verify applicable noise abatement procedures.	Annex 14; Doc 9157
	1.1.8.6	Verify the available airport lighting and visual aids.	Annex 14; Doc 9157
	1.1.8.7	Verify eventual lighting activation procedures from the cockpit.	Annex 14;Doc 9157
	1.1.8.8	(Helicopters only). Review the landing location and the airspace surrounding it.	Annex 14, Volume II

1.1.9	Review n	avigation infrastructure used by the procedure	
	1.1.9.1	Review flight inspection reports (if available).	Doc 8071; IFP design report
	1.1.9.2	Confirm whether the available navigation infrastructure is suitable for the procedure or PBN navigation specification.	Doc 9613
1.1.10		Identify items that require flight inspection	
	1.1.10.1	Determine if new or amended fixes require flight inspection due to eventual signal reception constraints.	Annex 10; Doc 8071
	1.1.10.2	Determine if any visual aids (e.g. VASIS) require angle evaluations.	Annex 10; Doc 8071
	1.1.10.3	Determine if the navigation infrastructure requires a flight inspection (e.g. GNSS signal-in-space).	Annex 10; Doc 8071
1.1.11	Determin	e required steps in the flight validation	
	1.1.11.1	Verify source of obstacle and terrain data accuracy/integrity and determine whether an obstacle assessment in flight is required.	Doc 9906, Volume 5
	1.1.11.2	Verify that an obstacle limitation process is enforced and, if not determine whether an assessment of obstacles in flight is required.	Annex 14; Doc 9906, Volume 5
	1.1.11.3	Verify that the flyability of the procedure is assured by other means (e.g. ground validation, overlay of existing procedure).	Doc 9906, Volume 5
	1.1.11.4	Verify whether any deviations from criteria were used in the procedure design and verify the provided mitigation. Determine the step to be taken to confirm the provided mitigation.	Doc 9906, Volume 5

2. ATTITUDES

An attitude is the mental state of a person that influences behavior, choices and expressed opinion. Our beliefs and values are combined with our cognitive skills; thus, two components (affective and cognitive) give us our long range or persistent measurements for dealing with the world³. While a person may have the competency to perform a task, that does not mean he or she will have the desire (attitude) to do so correctly. In other words, competencies give us the ability to perform, while attitudes give us the desire to perform. Attitudes change with various events in a person's life.

3. FLIGHT VALIDATION PILOT SPECIFIC SKAs

Some SKAs are particularly useful for FVPs and are a great aid to those seeking to become an "expert performer". These SKAs are not necessarily a prerequisite to start training as an FVP, nor does the absence of those SKAs make it impossible to perform on the job. It is possible that such SKAs will develop during the process of training or later during job performance.

3.1 Demonstrate three-dimensional visualization (skill)

It is of great advantage to FVP trainees to have three-dimensional visualization skills in order to transfer the provided procedure package data (maps, charts, obstacles) into a three-dimensional mental picture.

³ Bootzin, Richard R. et al. *Psychology Today: An Introduction*. December 1983.

3.2 Demonstrate ability to work as part of a team (attitude)

Flight validation functions as one element of the air traffic safety system. For an efficient process, it is very desirable that FVPs be adaptable and open-minded to requests and requirements from other stakeholders. This means that they need to demonstrate their ability to work as part of a team, including demonstrating communication, negotiating and group work facilitation skills.

3.3 Criticism (attitude)

Flight validation pilots should be open to constructive criticism that is given regarding their work, and they, in turn, should be able to critique another pilot's work in an unbiased and results-oriented way. Flight validation is not an exact science; therefore, it is possible that several solutions serve the same purpose and sometimes do not exactly fit the expectations of stakeholders. Being open to criticism and being able to communicate criticism will serve the safety and efficiency of the air traffic system.

— END —

